Kopfweiden an der Alten Niers

Ein Nachtrag zur »Alten Niers«: Es geht um die Kopfweiden am Ufer des Flüsschens. Sie sind typisch für die Landschaft am Niederrhein. Hier zwei Versuche, meine Erinnerung an diese bizarren Gebilde auf die Leinwand zu bringen (Acryl 70×50 bzw. 24×30).

 

Batschkapp

Merk dir doch einfach „Batschkapp”. Wie bitte? – Mich hat es zum Studium vom Niederrhein nach Hessen verschlagen und ich tüftele zusammen mit Gleichgesinnten an einer Übung in Vektorrechnung. Der Ratschlag des Kommilitonen ist gut gemeint, aber er spricht eine mir fremde Sprache. Es geht um das Kreuzprodukt dreier Vektoren. Die Vektoren A, B und C, miteinander kreuzmultipliziert, ergeben B mal Skalarprodukt von A und C  minus C mal Skalarprodukt von A und B. Als Formel geschrieben  A×(B×C)  =  B(A·C) – C(A·B). Mit „Batschkapp” ist offenbar die rechte Seite der Gleichung gemeint1. Ich buchstabiere also „B” = B, „a” = A, „tsch” = C, „k” = C, „a” = A und schließlich „pp” = B. Macht tatsächlich Sinn und half damals bei Klausuren enorm.

Und nun zur Bedeutung: Batschkapp – eine Kappe, die man sich über den Schädel „patscht”, um das Haupt vor unfreundlichem Wetter zu schützen? Ich war mir nicht sicher. Als Eselsbrücke spielte die Bedeutung ja auch keine Rolle (damals lebte Ms. Google noch nicht). Heutzutage ist klar: „Batschkapp” heißt in Mainfranken die Schiebermütze (Wikipedia). Auch in Südhessen spricht man diese Sprache. Denn ich lese mit großer Rührung in Rainer Witts Büchlein „Wenn’s dreimal pfeift, gibt’s Ärger – Geschichten und Anekdoten aus Darmstadt”, dass Papa Behrend vom Knusperhäuschen in der Dreibrunnenstraße eine „Batschkapp” besaß. Die setzte er immer dann auf, wenn er den Hof zwischen Küche und Gaststube überquerte. Das kann ich bestätigen: Als Student war ich, wiederum mit Gleichgesinnten, oft im Knusperhäuschen. Ein Höhepunkt des Abends war Papa Behrends Performance beim Nachfüllen unserer Gläser: Er nahm die Flasche (Wein der Hausmarke „von Woellm”), brachte sie über dem Glas blitzschnell in die Senkrechte, Öffnung nach unten, und unterhielt sich mit uns über das Wetter. Es gluckerte kurz, aber intensiv, und nach dem Wetterbericht war das Glas voll und die Flasche wieder in Normallage – eine Sache von Sekunden. Es gab Abende, da erlebten wir das Nachfüllen mehrmals. Hätte ich damals Papa Behrends Kappe vor Augen gehabt, wäre die Vektorrechnungsklausur vielleicht besser ausgefallen.      

1  Die Variante (A×BC  =  B(A·C) – A(B·C)  ist leider nicht „Batschkapp”-kompatibel.

 

Vergrößerung

Wenn ich von meinem Fernrohr erzählte, fragte man geradezu zwangsläufig nach dessen Vergrößerung. Nun, die Vergrößerung eines astronomischen Fernrohrs interessiert zwar, ist in der Regel aber zweitrangig (In der Hauptsache geht es darum, das optische Signal-zu-Rausch-Verhältnis anzuheben). Jedenfalls habe ich im Physikunterricht seinerzeit meine Schüler und Schülerinnen die Vergrößerung eines kleinen Fernrohr-Modells bestimmen lassen. Es bestand aus einem Objektiv, herausgeschraubt aus einem 8×30-Fernglas, mit einem Tubus, an dessen Ende ich eine 31-mm-Steckfassung zur Aufnahme verschiedener Okulare¹ angebracht hatte. Die Okulare waren Exemplare aus dem Okularsatz meines (Refraktor-)Fernrohrs.

 

Ein einfacher Versuch, eigentlich nicht des Aufhebens wert. Aber ich stellte beim Stöbern in meinen Unterlagen fest, dass der Versuch mindestens einen Messpunkt (­Pfeil) lieferte, der nicht dem Trend der übrigen Daten folgte. Eine aktuelle Messung bestätigte diese Abweichung – ein unbefriedigender Zustand. Deshalb dieser Bericht, vielleicht hat einer der Leser des Artikels eine Erklärung. Mehr zu dem damaligen Schüler/Schülerinnen-Versuch hier.

¹ Die Okulare bezog ich, zusammen mit einem Fernrohr-Objektiv, von der Firma Lichtenknecker (Daraus entstand mit Hilfe eines 1,50 m langen Kanalrohrs und eines Okularauszugs mein erstes Fernrohr). Damals war das alte 31-mm-Steckmaß noch üblich.

Q-Faktor durch Reflexion

Zur Abwechslung Physik: Es geht wieder einmal um den Q-Wert eines Schwingkreises aus Spule (Induktivität L) und Kondensator (Kapazität C). In diesem Fall ist es ein Parallelkreis. Im Ersatzschalbild fügen wir noch einen Widerstand hinzu, einen weiteren Zweig parallel zu Spule und Kondensator. Sein Wert R stellt die Ohmschen Verluste des Kreises dar. Die Aufgabe lautet, den Gütefaktor Q dieses RLC-Kreises durch eine Reflexionsmessung zu bestimmen. Ich benutze dazu meinen kürzlich erstandenen Vektor-Antennen-Analysator1 FA-VA 5, also ein Gerät, das eine elektromagnetische Welle über ein Kabel dem zu untersuchenden Bauteil zuführt und ermittelt, welcher Anteil der Welle vom Bauteil zurückgeworfen wird. Die vom Analysator gemessene Größe ist eine komplexe Zahl, genannt Reflexionsfaktor S11, und wird nach Betrag und Phase ermittelt. S11 ist abhängig von der Frequenz f, mit der der RLC-Kreis angeregt wird, und wird in der Regel als Ortskurve – mit f als Parameter – in der komplexen Zahlenebene (Smith-Diagramm) dargestellt.

Die Idee zu dieser Messung entstand beim Stöbern in Internet: Ich stieß auf die Versuchsanleitung zu einem Experiment des Physik-Praktikums an der TU Darmstadt2. Dort sollte mit Hilfe des Reflexionsverfahrens der Q-Wert eines HF-Resonators bestimmt werden. Das Institut für Kernphysik der TU Darmstadt benutzt solche Resonatoren an seinem Elektronenbeschleuniger S-DALINAC. In jungen Jahren habe ich selber längere Zeit an diesem Institut gearbeitet (am Vorgänger-Beschleuniger DALINAC). Es freut mich also, in dieser Sache noch einmal an meine ehemalige Arbeitsstätte erinnert zu werden.

Der RLC-Parallelkreis ist das übliche Ersatzschaltbild eines HF-Resonators im Fall von Reflexionsmessungen. Was als Ersatzschaltbild taugt, sollte sich auch in der Realität bewähren. Die Frage (siehe oben) ist also: Kann man den Gütefaktor Q eines RLC-Kreises durch eine Reflexionsmessung bestimmen?

Mein RLC-Schwingkreis besteht aus einer Luftspule mit der Induktivität L = 10 μH und einem Keramik-Kondensator der Kapazität C = 330 pF. Nach der Thomsonschen Formel sollte seine Resonanzfrequenz f0 = 2,77 MHz betragen – gemessen wurden 2,796 MHz. Ohne auf Theorie und Details der Messung3 einzugehen, hier das Ergebnis meines (Hobby-)Experiments: Die Abbildung zeigt, als Funktion der Frequenz, den Reflexionsfaktor S11 und die Impedanz Z des RLC-Kreises – und zwar in unterschiedlichen Koordinatensystemen. Die Ortskurve des S11-Faktors (grüne Kurve) ist im Smith-Diagramm dargestellt, während die Impedanz, aufgeteilt in 

Realteil (blaue oder schwarze Kurve) und Imaginärteil (rote Kurve) in dem zusätzlich eingezeichneten kartesischen Koordinatensystem abzulesen ist. Gemessen wurde im Frequenzintervall zwischen 2 und 4 MHz. Von den eingezeichneten Frequenzmarken interessieren hier die Resonanzfrequenz f0 = 2,796  MHz (Marke 1) und die beiden –3dB-Frequenzen f2 = 2,783 MHz und f3 = 2,810 MHz (Marken 2 und 3). Daraus ergibt sich eine Bandbreite von Δf  =  f3f2  = 0,027 MHz, der Gütefaktor Q = f0f  ist damit Q = 104. Zur Kontrolle bestimmte ich mit einem Rauschgenerator die Filterkurve (Resonanzkurve) des RLC-Kreises. Deren Resonanzfrequenz war f0 = 2,792 MHz, ihre Bandbreite Δf  = 0,0265 MHz. Daraus folgt als Gütefaktor Q = 107.

Das professionelle Experiment an einem HF-Resonator (an Stelle eines RLC-Schwingkreises) wird in einem Vortrag am CERN beschrieben4.

 

1  Der Vektor-Antennen-Analysator FA-VA 5 wird in Amateurfunk-Kreisen als Bausatz gehandelt. Er wurde von Michael Knitter (DG5MK) entworfen, die Software zur Anbindung des Geräts an einen PC und zur Darstellung der Ergebnisse auf dem Bildschirm stammt von Thomas Baier (DG8SAQ).
2  Versuch 1.2 – Hochfrequenzresonatoren, Physikalisches Praktikum für Fortgeschrittene, Institut für Kernphysik, TU Darmstadt. www.ikp.tu-darmstadt.de› ikp › lehre_ikp › vers12
3  Eine ausführliche Beschreibung der Messungen hier.
4  Antonio G., Markus J., Hélène G. und Alex S.:  RF Cavity experiments, CERN, Presentation_RF_AG_MJ_HG_AS.pdf, indico.cern.ch

 

 

Deelense Straal – Übung in Malerei

Der Deelense Straal (Foto) ist einem kilometerlanger Streifen Heideland im niederländischen Nationalpark „Hoge Veluwe“. Er wird von Kiefern und Birken gesäumt und bildet eine breite Schneise mit gelbem Gras und rotbraunem Heidekraut. Eine Sichtachse ohne Kirchturm, Tempelchen oder Obelisk im Fluchtpunkt. Auch bei klarem Wetter hat man den Eindruck, er löst sich in der Ferne auf. Ich versuche, die Stimmung der Landschaft auf Leinwand festzuhalten – mit mäßigem Erfolg. Meine Lehrerin meint, die Farben seien zu vordergründig, nicht lebendig genug. Vermutlich hat sie Recht. Ich poste das Gemälde trotzdem, sozusagen als ersten Entwurf.

 

 

 

 

 

 

 

 

   

 

 

 

 

Nachtrag: Der erste Entwurf war in Acryl, jetzt einer in
Aquastift vermalt, hoffentlich besser. … und noch ein Versuch
in Mischtechnik.

 

Alte Niers

Jugenderinnerungen in Schwarzweiß aus den 1950er-Jahren: Fotos von der „Alten Niers“ in Mönchengladbach. Das Flüsschen schlängelte sich in den Nachkriegsjahren noch  durch die Bende östlich des Ortsteils Geneicken. Wasser führte es kaum, das strömte zum großen Teil im Bresges Park über ein Wehr und ergoß sich in einen langweiligen Kanal, die „Neue Niers“. Heute ist die „Alte“ zugeschüttet und die „Neue“ wird renaturiert. Die Kartenskizze zeigt die Orte, an denen die Fotos entstanden.

Marmor an der Lahn

Eine Überraschung auf dem Lahnwanderweg: Der UNICA-Bruch bei Villmar an der Lahn. Er war, so liest man, einer der vielen Steinbrüche, in denen der Lahn-Marmor abgebaut wurde. Heute ist er in Rente und lehrt Erdgeschichte. Zwei Terrassen mit glatt gesägten Wänden bieten einen Einblick in das Leben in den Riffen des Devon-Meeres – vor 380 Millionen Jahren. Die angeschliffenen Kalk-Skelette der damaligen Meerestiere (linkes Bild) erinnern an Computergrafiken. Sie sehen aus wie Darstellungen von JULIA-Mengen mit Siegel-Disks, die mein Rechner seinerzeit ausdruckte. Ein passendes Exemplar (rechtes Bild) habe aus dem Archiv ausgegraben.

Photonenernte

Meine Erntemaschine ist eine kleine Solarzelle, verborgen hinter den Rosen im Vorgarten. Sie liefert den Strom für vier Leuchtdioden, die ein kleines Plastikschild auf dem Schreibtisch beleuchten. Das tut sie nun schon seit Jahren – Zeit für eine kleine Anerkennung: Ich habe den Wirkungsgrad einer ihrer Artgenossinnen aus polykristallinem Silizium bestimmt. Hier ist das Ergebnis.

Mikrowellen im verbotenen Gelände

Das Experiment ist aus dem Schulunterricht entstanden, als wieder einmal Versuche mit Mikrowellen an der Reihe waren: Eine elektromagnetische Welle dringt bei Totalreflexion an einem optisch dünneren Medium in dieses ihr „verbotene” Medium ein. Ein grundlegendes physikalisches Phänomen, das man experimentell bearbeiten sollte, auch quantitativ – dachte ich. Versuche mit Mikrowellen, die an der Grenzfläche zwischen Paraffin und Luft (total-)reflektiert werden, erschienen dafür geeignet. Anleitungen oder Beschreibungen für quantitative Experimente gab es nicht. Nachschlagen bei Crawford1 lieferte einige Hinweise, der Rest war Improvisation. Die Abbildung zeigt das Ergebnis meiner Messungen. Aufgetragen ist die Eindringtiefe der Mikrowellen als Funktion des Winkels der Totalreflexion. Die beste Anpassung an die Messpunkte (rote Kurve) liefert den Brechungsindex von Paraffin bei der Wellenlänge 3,2 cm, hier n = 1,43 ± 0,04. Der Literaturwert ist  n = 1,46. Mehr dazu hier.

1  J. S. Crawford: Berkeley Physics Course, Volume III (Waves), New York: MacGraw-Hill (1965)

 

Kaltweiß

Weißes Licht, zum Beispiel das der Sonne, setzt sich aus mehreren Farben zusammen. Bei Leuchtstoffröhren und Leuchtdioden (LED) kennt man kalt- und warmweiß. Im Foto ist das Weiß einer kaltweißen Leuchtdiode in seine Farben aufgefächert (sogar mehrfach). Untersucht man das Bild genauer, findet man heraus, welche Farben es sind. Mehr dazu hier.