Spiegelungen mit Zirkel und Lineal

Abb_6Das Problem, Spiegelungen zentralperspektivisch darzustellen, verfolgt mich. Inzwischen bin ich zwar sicher, dass mein Computerprogramm vernünftige Ergebnisse liefert (mehr dazu hier). Aber neu ist die Erkenntnis, dass man das perspektivische Bild einer Spiegelung auch mit Zirkel und Lineal konstruieren kann. Die alten Meister wussten offenbar, wie man das macht, sie hatten noch keine Computer. In klassischen Interieurs hängt oft ein Spiegel an der Wand.

Dieses Wissen ist natürlich nicht verloren gegangen, Konstruktionsanleitungen fand ich in der Literatur zur Genüge. Damit fühle ich mich gedrängt nachzuweisen, dass die Mathematik, die im Computerprogramm benutzt wird, auch den geometrischen Konstruktionen zugrunde liegt. Zwei einfache Konstruktionen habe ich „durchgerechnet” – sie sind mit der Mathematik verträglich. Die Skizze zeigt eine dieser Konstruktionen1: Das Spiegelbild (blau) eines Quaders (schwarz) an einem vertikalen Spiegel (rot).  Hier die Mathematik zu den Konstruktionen.

1 nach Bruce MacEvoy: elements of perspective, www.handprint.com/HP/WCL/perspect6.html

GymOd

GymOd_Logo_Koloriert_MEine etwas verwegen kolorierte Umrisszeichnung meiner früheren Arbeitsstätte. Habe sie gerade zwischen anderen Skizzenblättern gefunden. Zum Wegwerfen zu schade. Weitere Bilder des Gymnasiums Odenkirchen und ein Foto, das mit einer Lochkamera aufgenommen wurde, hier.

Gespiegelt und zentralprojiziert (2)

Quader_vor_senkr_Spiegel_02Die Spiegelung an einer horizontalen Ebene (Wasseroberfläche) war für den Computer kein Problem, siehe vorherigen Artikel. Aber der senkrecht stehende Spiegel machte Schwierigkeiten: im Programm war ein Vorzeichenfehler. Der ist jetzt korrigiert. Die Skizze (Abbildung links), die auf meinem Bildschirm ausgegeben wird, sieht jedenfalls gut aus. Sie stimmt mit der Zeichnung überein, die man mit Zirkel und Lineal konstruiert1.

1 siehe z. B. Bruce MacEvoy: elements of perspective, www.handprint.com/HP/WCL/perspect6.html

Gespiegelt und zentralprojiziert

 

Reinhardtsgrimma_04_mit_Foto_MMDas Bild, das ein Spiegel oder eine ebene Wasseroberfläche von einem Gegenstand erzeugt, folgt den Gesetzen der Optik: Der Lichtstrahl, der von einem Punkt des Gegenstandes ausgeht und unser Auge trifft, wird an der Spiegelebene so reflektiert, dass Einfalls- und Ausfallswinkel gleich sind. Das ist eine einfache Sache. Schwieriger wird es, wenn Gegenstand und Spiegelbild, wie zum Beispiel in der Malerei, zentralperspektivisch darzustellen sind. Eine perspektivisch richtige Darstellung kann man berechnen. Dazu benötigt man etwas Lineare Algebra –  nur ein paar Grundkenntnisse über Matrizen und Vektoren. Sie sind ohne Schwierigkeiten in ein Computerprogramm einzubauen. Das habe ich getan. Von dem Programm will man natürlich wissen, ob es richtig rechnet. Also muss ein Test her.

Mein Computerprogramm ist einfach: Es kann nur einen einzigen geometrischen Körper spiegeln, nämlich einen Quader (ein Gebilde von der Form einer Streichholzschachtel). Gesucht war deshalb ein Foto mit einem Objekt, das sich durch einen Quader annähern lässt, und das auch noch gepiegelt wird. Das Gebäude auf dem Bild erschien  mir als Testobjekt geeignet. Es liegt auf einer kleinen Anhöhe im Hintergrund des Bildes und spiegelt sich in einem Teich im Vordergrund. Wen es interessiert: es ist das Badehaus im Schlosspark von Reinhardtsgrimma  (Ortsteil von Glashütte in Sachsen). Mein Testobjekt wurde zum Quader vereinfacht und dann dem Computerprogramm zur Verarbeitung eingegeben. Die Zeichnungen von Quader (Original) und Spiegelbild, die der Rechner erzeugte, habe ich in das Foto hineinkopiert. Wie man sieht, hat der Computer richtig gerechnet (jedenfalls für den Fall waagerechter Spiegelebenen). Mehr über die Mathematik der Spiegelung und das Programm hier.

 

Pelješac , . . .

CIMG1145_Mgesprochen [ˈpɛʎɛʃats],  ist die längste Halbinsel vor der Küste Dalmatiens – von Mali Ston im Süden bis Lovište im Norden sind es knapp 70 km. Orebić (hier abgebildet) ist der größte Ort auf Pelješac. Erinnerung an einen Sommerurlaub in Kroatien.

Gekoppelte Pendel

CIMG1091_MCondons Uhrenexperiment1 fand ich schon beim ersten Lesen seines Artikels faszinierend. Es ging um die Frequenzen der Normalschwingungen zweier gekoppelter Oszillatoren. In Condons Experiment waren diese Oszillatoren das Unruh-Drehpendel der Uhr und deren (drehbar gelagertes) Gehäuse. Sie sind durch die Rückstellfeder der Unruh gekoppelt. Die Frequenzen der Normalschwingungen hängen davon ab, wie stark die Oszillatoren gekoppelt und wie weit sie gegeneinander verstimmt sind. Meine eigenen Versuche zeigten, dass man Condons hyperbelartige Frequenz-Kurven auch bei gekoppelten Fadenpendeln beobachtet. Nach den ersten zaghaften Experimenten hier das Ergebnis einer weiteren Messung – ich wollte sicher sein, dass meine Messungen reproduzierbar waren. Das waren sie. Das Foto zeigt die Anordnung der Fadenpendel. Die Kopplungsfeder bestand aus dünnem Eisendraht und ist deshalb kaum erkennbar.

1 E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, American Journal of Physics. 16, 14 – 16 (1948).

Kugelfunktionen . . .

Daniel Kehlmann beschreibt die Szene in seinem Buch „Die Vermessung der Welt” mit hintergründigem Humor: Carl Friedrich Gauß und Alexander von Humboldt unterhalten sich über das Magnetfeld der Erde. Humboldt brüstet sich damit, mehr als zehntausend Messungen des Feldes gemacht zu haben. Gauß entgegnet cool, Daten heranschleppen reiche nicht, man müsse auch denken – und lässt „leise lachend” die Bemerkung fallen: „Einfache Kugelfunktionen”. Weiter heißt es dann: „Kugelfunktionen. Humboldt lächelte. Er hatte kein Wort verstanden.”

Geomagnetischer_Pol_02Kugelfunktionen sind für mich nicht das Problem, aber was Gauß mit „denken” meint, war mir dann doch nicht so ganz klar. Also Literaturstudium. Was mir zum Verständnis wichtig erschien, habe ich hier zusammengestellt.

Gauß stellte die Magnetfeldstärke als Summe von Kugelfunktionen dar und bestimmte die Anteile der einzelnen Summanden so, dass die damaligen Messwerte (zum Beispiel die von Humboldt) richtig wiedergegeben wurden. Das macht man auch heute noch so – mit den aktuellen Messwerten.  Dabei ergibt sich, dass eine einzige Kugelfunktion in dieser Summe überwiegt. Sie beschreibt ein Feld, das außerhalb der Erde wie das eines gigantischen Stabmagneten aussieht (ein Dipolfeld). In diesem Feld gibt es zwei gegenüberliegende Orte auf der Erde, an denen die magnetischen Feldlinien senkrecht aus der Erde austreten bzw. wieder eintreten: die magnetischen Pole. Da man den Verlauf der Feldlinien kennt, kann man aus den Messwerten von Deklination und Inklination an einem beliebigen Ort der Erde die Position des magnetischen Nord- bzw. Südpols näherungsweise errechnen. Die Abbildung zeigt, dass man dazu etwas sphärische Trigonometrie benötigt. Mehr dazu steht auch hier.

Condons Uhrenexperiment

N_Schwingungen_gekoppelter_Pendel__FrequenzenEine interessante Anwendung der Theorie gekoppelter Schwingungen wurde vor etwa 70 Jahren von E. U. Condon (in Zusammenarbeit mit P.E. Condon) vorgestellt1 – das Problem geht offenbar zurück auf eine noch ältere Arbeit von Lord Kelvin2. Es ging um die Frage, in welcher Weise der Gang einer Taschenuhr durch (Dreh-)Schwingungen ihres Gehäuses beeinflusst wird. Ein entsprechendes Experiment sollte darüber Aufschluss geben.

Das Ergebnis war, dass der Gang der Uhr in der Tat durch die Kopplung zwischen dem “Schwungrad” des Uhrwerks (dem Unruh-Ring) und dem Gehäuse beeinflusst wird. Diese Kopplung wird durch die Spiralfeder hergestellt, die das Rückstellmoment für den Unruh-Ring liefert. Es gibt also Abweichungen im Gang der Uhr von der Zeit, die gemessen wird, wenn das Gehäuse gegen Drehung fixiert ist. Und zwar so, dass die Uhr schneller geht, wenn die Eigenfrequenz des Gehäuses kleiner ist als die der Unruh, und dass sie langsamer geht, wenn die Gehäuse-Eigenfrequenz größer als die der Unruh ist.

Das Condon’sche Uhrenexperiment faszinierte mich, als ich vor Jahren zum ersten Mal davon erfuhr. Jetzt, nach langer Zeit, ein bescheidener Versuch, die Physik des Experiments nachzuvollziehen – soweit das mit einfachen Mitteln möglich ist. Die Idee: ein Modell-Experiment mit zwei durch eine Spiralfeder gekoppelten Fadenpendeln. Keine Simulation, die wäre wegen des großen Massenunterschieds zwischen Gehäuse und Uhrwerk-Unruh zu aufwändig gewesen. Die eigenen Versuche dazu waren trotzdem interessant. In der Abbildung sind die Frequenzen f der Normalschwingungen zweier gekoppelter Fadenpendel aufgetragen, von denen eines das “Uhren”-Pendel, das andere das “Gehäuse”-Pendel darstellte. Sie sind aufgetragen als Funktion der Eigenfrequenz f1 des “Gehäuse”-Pendels.

1  E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, A. J. Phys. 16, 14 – 16  (1948)
2  Lord Kelvin: Popular lectures and addresses, MacMillan 1894

Physik und Intuition

CIMG1040Zwei Gleiter auf einer Luftkissenbahn, durch eine Spiralfeder verbunden und außen durch je eine weitere Feder fixiert: Das ist der Prototyp des Versuchs Gekoppelte Pendel. Er gehört zum Pflichtprogramm im physikalischen Grundpraktikum, dort wird er meist mit Fadenpendeln realisiert. In unserem Fall (Foto) haben die Gleiter die gleiche Masse. Zwischen ihnen sind zwei parallel wirkende Federn angebracht, während die äußeren Federn Einzelfedern sind. Da alle Federn von gleicher Art sind, hat die Parallelschaltung zwischen den Gleitern gegenüber den Einzelfedern außen die doppelte Federkonstante. Eine einzelne Feder hätte auch genügt. Die gesamte Anordnung ist jedenfalls symmetrisch bezüglich der Mittelachse zwischen den Gleitern.
Die Hin- und Herbewegung (Schwingung) der Gleiter ist im allgemeinen Fall kompliziert, trotz der symmetrischen Anordnung. Es gibt jedoch zwei Arten von Schwingungen, die sich dadurch auszeichnen, dass sie synchron ablaufen: Eine „Gleichtaktschwingung” der Gleiter, bei der sich diese mit konstantem Abstand nach links und rechts bewegen, und eine „Gegentaktschwingung”, bei der sie sich aufeinander zu und voneinander weg bewegen1. Diese beiden Schwingungsmoden, genannt Normalschwingungen, würde man in gewisser Weise auch intuitiv „verstehen”.
Wie aber verhält es sich, wenn die Symmetrie gestört ist – etwa dadurch, dass die Gleiter unterschiedliche Masse haben? Natürlich gibt es auch dann Normalschwingungen. Aber kann man auch das “intuitiv” verstehen? Nicht unbedingt, meine ich. Wir rechnen nach und vergleichen das Ergebnis mit dem Experiment. Mehr dazu und ein weiteres Experiment.

1 physikalisch exakt müsste man die Schwingungen der Gleiter mit “gleichphasig” bzw. “gegenphasig” bezeichnen