Rietveld Schröder Haus

CIMG1993_M

Das Bauhaus wird in diesem Jahr 100. Vielleicht sollte man nicht vergessen, dass zeitgleich zum Bauhaus auch abseits von Weimar und Dessau moderne Architektur entwickelt wurde. Ein Beispiel: das Rietveld Schröder-Haus in Utrecht (Niederlande), gebaut 1924 nach den Prinzipien von De Stijl. Gerrit Rietveld (1888 – 1964) war der Architekt, Frau T. Schröder (1889 – 1985) die Bewohnerin. Das Haus wurde im Jahr 2000 von der UNESCO in die Liste der Weltkulturstätten aufgenommen. Gestern war es grau und regnerisch – für ein Foto gar nicht so schlecht, an solchen Tagen gibt es schöne gesättigten Farben. Weitere Bilder hier.

Übungen in Acryl

Verschiedene Versuche, Farbe auf der Leinwand aufzutragen und zu verteilen – sehr experimentell.

 

CIMG1961_MMCIMG1964_MM

 

 

 

 

 

 

 

CIMG1966_MMCIMG1969_MM

 

 

 

 

 

 

 

Flusen im Bild

CIMG1916_MMEin hauchdünnes Polster von Fasern sammelt sich im Flusensieb der Waschmaschine. Seine Farbe richtet sich nach dem, was  vorher in der Trommel war. Hin und wieder schöpft man das Polster ab, damit die Laugenpumpe weiter arbeitet.

Flusenpolster lassen sich zerrupfen, zerknüllen und vermischen. So entstehen Wolkenfetzen unterschiedlicher Form und Farbe. Aus diesem Material wird ein Bild: Man klebt die Fetzen über- oder nebeneinander auf eine Holzplatte und achtet dabei auf den Rhythmus der Farben und Formen.  Links (Abbildung) mein erster Versuch.

2019 – ein (Oster-)paradoxes Jahr

Vollmond_Osterdatum_01Dieses Jahr ist es der Kalender, der aus dem Rahmen fällt: 2019 feiern wir Ostern nicht an dem Tag, an dem das Fest eigentlich stattfinden sollte – 2019 ist ein Jahr mit einem Oster-Paradox.

Ostern, so lernt man, fällt auf den ersten Sonntag nach dem ersten Vollmond nach Frühlingsanfang. Der Frühlingsanfang ist der Zeitpunkt, an dem die Sonne auf ihrer Bahn den Himmelsäquator aufsteigend durchstößt. Der so definierte astronomische Frühlingsanfang kann auf den 19., 20. oder 21. März fallen. Aber Ostern ist ein christliches Fest, deshalb hatte die Kirche ein Mitspracherecht bei der Terminvergabe: sie legte den Frühlingsanfang unverrückbar auf den 21. März. Das geschah schon im Jahr 325 auf dem Konzil von Nikäa (heute Iznik, Türkei). Im Zuge der Kalenderreform 1582 wurde zudem ein Rechenverfahren erarbeitet, das die Vollmondphasen näherungsweise vorhersagt. Es wurde zur Festlegung des Osterdatums verbindlich vorgeschrieben und ist als Datumsregel nach dem Kirchenzyklus bekannt. Später entwickelte C. F. Gauss aus dieser Regel einen Algorithmus, nach dem sich das Osterdatum berechnen lässt.

Diese Regel führt 2019 zu einer ungewöhnlichen Situation: Der astronomische Frühling beginnt am 20. März 2019, 22:58 Uhr MEZ, also durchaus normgerecht. Das Problem ist, dass unser Trabant schon kurz danach (also kurz nach dem 20. März, 22:58 Uhr MEZ) die Phase „Vollmond” erreicht, nämlich am 21. März, 2:43 Uhr MEZ. Ostern müsste daher, astronomisch gesehen, auf den darauf folgenden Sonntag, den 24. März fallen. Tatsächlich ist aber nach dem Kirchenzyklus (und nach dem Rechenverfahren von Gauss) Ostern am 21. April, also vier Wochen später. Diese Datumsverschiebung ist das Oster-Paradox.

Es ist interessant, die astronomischen Daten am (Personal-)Computer nachzurechnen. Dazu gibt es in der Literatur Programme, zum Beispiel die von O. Montenbruck und Th. Pfleger1. Mehr zum Osterparadoxon und zu den Computer-Rechnungen hier.

1  Oliver Montenbruck und Thomas Pfleger: Astronomie mit dem Personal Computer, 3. Auflage, J. Springer, Berlin-Heidelberg-NewYork, 1999. Ein hervorragendes Buch, nicht nur für Experten.

Experimente mit einem Prisma

Apparatur_CIMG1831_MMEin Sonnenstrahl fällt durch das Fenster auf die geschliffene Kante eines Glastischs, wird dort abgelenkt und in die Farben des Regenbogens zerlegt. Die Frage ist, ob Licht aus anderen Lichtquellen sich ähnlich verhält – zum Beispiel Licht aus einer Leuchtstoffröhre, die mit Helium gefüllt ist. Also muss ein physikalisches Experiment her: wir beleuchten einen Spalt mit dem Licht einer Helium-Leuchtstoffröhre, bündeln das Licht, das aus dem Spalt austritt, zu einen Strahl und lassen es schräg auf unsere „Glaskante” fallen. Die Glaskante ersetzen wir durch einen Glaskörper mit zwei geschliffenen Flächen, die unter spitzem Winkel zusammentreffen. Ein solcher Körper hört auf den Namen Prisma. Wie die Glaskante lenkt das Prisma den Strahl ab und fächert ihn nach den Farben des Regenbogens auf. Zur Beobachtung benutzen wir ein Fernrohr. Das heißt, wir fokussieren den aufgefächerten Strahl in die Brennebene einer Sammellinse und schauen uns das dort entstandene Bild mit einer Lupe an. Das Ergebnis: im Licht des Heliums ist nicht der ganze Regenbogen vertreten. Es gibt zwar an einigen Stellen Linien mit den Farben, die der Regenbogen an ihrer Position hätte, aber nicht den kontinuierlichen Übergang vom Rot über das Gelb und Grün zum Blau und Violett. Der Einsatz rechts unten in der Abbildung zeigt die Linien des Heliums, andere Atome identifizieren sich durch andere „Spektrallinien”. Zur Erklärung der Regenbogenfarben und der Spektrallinien muss man in die Quantenmechanik einsteigen. Das ersparen wir uns hier.
Den Winkel, unter dem die Spektrallinien erscheinen, misst man mit einem Prismenspektrometer. Aus dem Winkel berechnet man die Wellenlänge der zur Linie gehörenden Strahlung. Die Abbildung zeigt ein Gerät, das zu Unterrichtszwecken an Schulen und Hochschulen verwandt wird. Das Prisma befindet sich unter der Abdeckkappe in der Mitte des kreisförmigen Tischs mit dem Teilkreis. Dieser Tisch ist um seine vertikale Mittelachse drehbar. Der Glaskolben rechts im Bild ist die mit Helium unter geringem Druck gefüllte Gasentladungsröhre. Links unten sieht man das Fernrohr zur Beobachtung des Spektrums. Es lässt sich zur Messung des Ablenkwinkels um die Mittelachse des Drehtischs schwenken. Hier mehr über das Prismenspektrometer.

Im Hohen Venn

CIMG1765_MWer Weite und Eintönigkeit liebt, wandert im Hohen Venn. Am besten im Wallonischen Venn, nur ist das für Wanderer weitgehend gesperrt. Es gibt aber einen Rundweg, der am Rand des Venns entlang führt und jederzeit den Blick auf das Moor bietet. Startet man bei Baraque Michel, geht man zunächst nach Osten und folgt dem Flüsschen Hill (Helle) bis zum Waldrand. Am Waldrand biegt man ab nach Süden, überquert den Fluss (es gibt eine Brücke) und erreicht nach einiger Zeit einen geschotterten Weg, der in Richtung Südwesten am Croix de Lorraine vorbei auf die Landstraße N676 zu geht. Kurz vor der Landstraße biegt man im rechten Winkel nach rechts ab und geht dann in nordwestlicher Richtung am Rand des Venns entlang zurück zur Baraque Michel. Die Strecke ist insgesamt etwa 13 Kilometer lang. Unterwegs entstanden, mehr oder weniger beiläufig, die beiliegenden Fotos. Die meisten zeigen gelbes Gras im Vordergrund und dunklen Wald, weit entfernt, im Hintergrund. Auch das Gegenteil von Abwechslung hat seinen Reiz.

Effektive Federmasse

CIMG1512_MDas Federpendel (Foto): Eine Schraubenfeder, am oberen Ende befestigt, wird am unteren Ende mit einem Gewichtsstück belastet und ein wenig ausgelenkt. Das Gewichtsstück schnellt zurück und schwingt dann auf und ab. Die Schwingungsfrequenz (Kreisfrequenz) ist gleich der Wurzel aus dem Quotienten Federkonstante geteilt durch die Masse des Gewichtsstücks. Das ist richtig, wenn man die Masse der Feder vernachlässigt. In der Regel muss man sie berücksichtigen, ein Bruchteil der Federmasse geht in die Schwingungsfrequenz ein. Man kann diesen Bruchteil, die effektive Federmasse, berechnen. Er sollte abhängen vom Verhältnis Federmasse zu Gewichtsmasse. Meine Messungen zeigen, dass dies in der Tat der Fall ist. Mehr dazu …

Holland Harbour Lighthouse

CIMG1461_MErinnerung an eine Fahrt entlang des Michigan-Sees (USA): Wir stehen an einem Strand mit blendend weißem Sand am Ostufer des Sees. Vor uns ein Kanal, der zu einem „Inlandsee” mit dem Namen Macatawa führt, und dahinter auf einer Mole ein leuchtend rot gestrichenes Haus mit zwei Giebeln und einem Leuchtturm obenauf. Ein Postkartenmotiv. Haus und Leuchtturm sind unter dem Namen Holland Harbour Lighthouse bekannt. Holland ist die Stadt, die landeinwärts am Ende des Macatawa liegt. Sie wurde, wie der Name vermuten lässt, von niederländischen Siedlern gegründet. Die Siedler gruben auch den Kanal, so dass der Macatawa seit dem 19. Jahrhundert der Stadt Holland als natürlicher Hafen dient. Heute liegen dort Sportboote, Handelsschiffe gibt es nicht mehr.

Postkartenmotive haben eine gefährliche Nähe zum Kitsch. Meine Aquarellstift-Skizze ist, pardon, auch leicht kitschverdächtig.  Weitere Bilder des Holland Harbour Lighthouses hier.

Luftdruck

LKGymO02_AZur Wettervorhersage wird das Barometer heute nicht mehr benötigt, die wird schon seit Jahren vom Fernsehen geliefert. Früher wusste man: Fällt der Luftdruck, nähert sich ein Tief, in der Regel bedeutet das schlechtes Wetter. Steigt der Druck, kann man mit einem Hoch und gutem Wetter rechnen. Im Physikunterricht wird gezeigt, dass man das Barometer auch als Höhenmesser benutzen kann. Bekanntlich sinkt der Luftdruck mit steigender Höhe über NN. Und so verläuft die Physikstunde zum Thema Luftdruck:

Das Schulgebäude liegt auf einer Anhöhe, von hier aus lassen sich Punkte unterschiedlicher Höhe über NN bequem erreichen. Unterhalb des Gebäudes, nur wenige hundert Meter vom ihm entfernt, schlängelt sich die Niers (ein Flüsschen) durch ein Schrebergartengelände. Dessen topografische Höhe (vom Messtischblatt abgelesen) ist unsere Null-Marke. Von dort aus zieht die Schüler(innen)-Karawane, mit mehreren Dosenbarometern bewaffnet, bergauf. Wir überqueren eine Straße und machen zunächst Halt am Fuße des Gebäudes. Dort ist eine Höhenmarkierung eingemeißelt, die übernehmen wir ins Messprotokoll. Wir steigen im Gebäude weiter nach oben, zum Schluss durch das Dachgebälk bis in das Türmchen oben auf dem Dach des Bauwerks. Dessen Höhe über NN wurde der Schule irgendwann einmal vom Landesvermessungsamt mitgeteilt – ein weiterer Höhen-Fixpunkt. Unterwegs wird mehrmals der Luftdruck gemessen, an den genannten Punkten und an weiteren Stellen, deren Höhen wir interpolieren. Protokolliert wird, für jedes Barometer getrennt, die Differenz zur Messung an der Null-Marke. Am Ende sind wir insgesamt 50 m hochgestiegen und der Luftdruck ist um 6 mbar gesunken – ein Wert, der deutlich von Null verschieden ist und sogar mit der Therie übereinstimmt. Mehr zu Theorie und Experiment …

Das Foto des Schulgebäudes (Höhe des Türmchens auf dem Dach: 104 m über NN) wurde mit einer Lochkamera aufgenommen. Brennweite (Abstand Lochblende-Fotoplatte) f = 25 cm, Durchmesser der Lochblende D ≅ 0,35 mm, Belichtungszeit etwa 6  min.