Pelješac , . . .

CIMG1145_Mgesprochen [ˈpɛʎɛʃats],  ist die längste Halbinsel vor der Küste Dalmatiens – von Mali Ston im Süden bis Lovište im Norden sind es knapp 70 km. Orebić (hier abgebildet) ist der größte Ort auf Pelješac. Erinnerung an einen Sommerurlaub in Kroatien.

Gekoppelte Pendel

CIMG1091_MCondons Uhrenexperiment1 fand ich schon beim ersten Lesen seines Artikels faszinierend. Es ging um die Frequenzen der Normalschwingungen zweier gekoppelter Oszillatoren. In Condons Experiment waren diese Oszillatoren das Unruh-Drehpendel der Uhr und deren (drehbar gelagertes) Gehäuse. Sie sind durch die Rückstellfeder der Unruh gekoppelt. Die Frequenzen der Normalschwingungen hängen davon ab, wie stark die Oszillatoren gekoppelt und wie weit sie gegeneinander verstimmt sind. Meine eigenen Versuche zeigten, dass man Condons hyperbelartige Frequenz-Kurven auch bei gekoppelten Fadenpendeln beobachtet. Nach den ersten zaghaften Experimenten hier das Ergebnis einer weiteren Messung – ich wollte sicher sein, dass meine Messungen reproduzierbar waren. Das waren sie. Das Foto zeigt die Anordnung der Fadenpendel. Die Kopplungsfeder bestand aus dünnem Eisendraht und ist deshalb kaum erkennbar.

1 E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, American Journal of Physics. 16, 14 – 16 (1948).

Kugelfunktionen . . .

Daniel Kehlmann beschreibt die Szene in seinem Buch „Die Vermessung der Welt” mit hintergründigem Humor: Carl Friedrich Gauß und Alexander von Humboldt unterhalten sich über das Magnetfeld der Erde. Humboldt brüstet sich damit, mehr als zehntausend Messungen des Feldes gemacht zu haben. Gauß entgegnet cool, Daten heranschleppen reiche nicht, man müsse auch denken – und lässt „leise lachend” die Bemerkung fallen: „Einfache Kugelfunktionen”. Weiter heißt es dann: „Kugelfunktionen. Humboldt lächelte. Er hatte kein Wort verstanden.”

Geomagnetischer_Pol_02Kugelfunktionen sind für mich nicht das Problem, aber was Gauß mit „denken” meint, war mir dann doch nicht so ganz klar. Also Literaturstudium. Was mir zum Verständnis wichtig erschien, habe ich hier zusammengestellt.

Gauß stellte die Magnetfeldstärke als Summe von Kugelfunktionen dar und bestimmte die Anteile der einzelnen Summanden so, dass die damaligen Messwerte (zum Beispiel die von Humboldt) richtig wiedergegeben wurden. Das macht man auch heute noch so – mit den aktuellen Messwerten.  Dabei ergibt sich, dass eine einzige Kugelfunktion in dieser Summe überwiegt. Sie beschreibt ein Feld, das außerhalb der Erde wie das eines gigantischen Stabmagneten aussieht (ein Dipolfeld). In diesem Feld gibt es zwei gegenüberliegende Orte auf der Erde, an denen die magnetischen Feldlinien senkrecht aus der Erde austreten bzw. wieder eintreten: die magnetischen Pole. Da man den Verlauf der Feldlinien kennt, kann man aus den Messwerten von Deklination und Inklination an einem beliebigen Ort der Erde die Position des magnetischen Nord- bzw. Südpols näherungsweise errechnen. Die Abbildung zeigt, dass man dazu etwas sphärische Trigonometrie benötigt. Mehr dazu steht auch hier.

Condons Uhrenexperiment

N_Schwingungen_gekoppelter_Pendel__FrequenzenEine interessante Anwendung der Theorie gekoppelter Schwingungen wurde vor etwa 70 Jahren von E. U. Condon (in Zusammenarbeit mit P.E. Condon) vorgestellt1 – das Problem geht offenbar zurück auf eine noch ältere Arbeit von Lord Kelvin2. Es ging um die Frage, in welcher Weise der Gang einer Taschenuhr durch (Dreh-)Schwingungen ihres Gehäuses beeinflusst wird. Ein entsprechendes Experiment sollte darüber Aufschluss geben.

Das Ergebnis war, dass der Gang der Uhr in der Tat durch die Kopplung zwischen dem “Schwungrad” des Uhrwerks (dem Unruh-Ring) und dem Gehäuse beeinflusst wird. Diese Kopplung wird durch die Spiralfeder hergestellt, die das Rückstellmoment für den Unruh-Ring liefert. Es gibt also Abweichungen im Gang der Uhr von der Zeit, die gemessen wird, wenn das Gehäuse gegen Drehung fixiert ist. Und zwar so, dass die Uhr schneller geht, wenn die Eigenfrequenz des Gehäuses kleiner ist als die der Unruh, und dass sie langsamer geht, wenn die Gehäuse-Eigenfrequenz größer als die der Unruh ist.

Das Condon’sche Uhrenexperiment faszinierte mich, als ich vor Jahren zum ersten Mal davon erfuhr. Jetzt, nach langer Zeit, ein bescheidener Versuch, die Physik des Experiments nachzuvollziehen – soweit das mit einfachen Mitteln möglich ist. Die Idee: ein Modell-Experiment mit zwei durch eine Spiralfeder gekoppelten Fadenpendeln. Keine Simulation, die wäre wegen des großen Massenunterschieds zwischen Gehäuse und Uhrwerk-Unruh zu aufwändig gewesen. Die eigenen Versuche dazu waren trotzdem interessant. In der Abbildung sind die Frequenzen f der Normalschwingungen zweier gekoppelter Fadenpendel aufgetragen, von denen eines das “Uhren”-Pendel, das andere das “Gehäuse”-Pendel darstellte. Sie sind aufgetragen als Funktion der Eigenfrequenz f1 des “Gehäuse”-Pendels.

1  E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, A. J. Phys. 16, 14 – 16  (1948)
2  Lord Kelvin: Popular lectures and addresses, MacMillan 1894

Physik und Intuition

CIMG1040Zwei Gleiter auf einer Luftkissenbahn, durch eine Spiralfeder verbunden und außen durch je eine weitere Feder fixiert: Das ist der Prototyp des Versuchs Gekoppelte Pendel. Er gehört zum Pflichtprogramm im physikalischen Grundpraktikum, dort wird er meist mit Fadenpendeln realisiert. In unserem Fall (Foto) haben die Gleiter die gleiche Masse. Zwischen ihnen sind zwei parallel wirkende Federn angebracht, während die äußeren Federn Einzelfedern sind. Da alle Federn von gleicher Art sind, hat die Parallelschaltung zwischen den Gleitern gegenüber den Einzelfedern außen die doppelte Federkonstante. Eine einzelne Feder hätte auch genügt. Die gesamte Anordnung ist jedenfalls symmetrisch bezüglich der Mittelachse zwischen den Gleitern.
Die Hin- und Herbewegung (Schwingung) der Gleiter ist im allgemeinen Fall kompliziert, trotz der symmetrischen Anordnung. Es gibt jedoch zwei Arten von Schwingungen, die sich dadurch auszeichnen, dass sie synchron ablaufen: Eine „Gleichtaktschwingung” der Gleiter, bei der sich diese mit konstantem Abstand nach links und rechts bewegen, und eine „Gegentaktschwingung”, bei der sie sich aufeinander zu und voneinander weg bewegen1. Diese beiden Schwingungsmoden, genannt Normalschwingungen, würde man in gewisser Weise auch intuitiv „verstehen”.
Wie aber verhält es sich, wenn die Symmetrie gestört ist – etwa dadurch, dass die Gleiter unterschiedliche Masse haben? Natürlich gibt es auch dann Normalschwingungen. Aber kann man auch das “intuitiv” verstehen? Nicht unbedingt, meine ich. Wir rechnen nach und vergleichen das Ergebnis mit dem Experiment. Mehr dazu und ein weiteres Experiment.

1 physikalisch exakt müsste man die Schwingungen der Gleiter mit “gleichphasig” bzw. “gegenphasig” bezeichnen

2018

2018_KratzerHintergrund 2018 ist eine unscheinbare Zahl. Da lohnt sich ein Ausflug in die Zahlentheorie kaum. Wir versuchen es trotzdem:  2018 hat nur zwei Primfaktoren (2018 = 2·1009), ist also eine Fast-Primzahl. Was macht man, wenn man mehr wissen will? Man schaut in der OEIS nach, der Online Encyclopedia of Integer Sequences1. Dort findet man die übrigen Fast-Primzahlen mit nur zwei Primfaktoren (Semiprimes) unter der Nummer A001358.  Die Folge beginnt mit 4, 6, 10, 14, 15, … In den Bemerkungen zu A001358  liest man, dass große Semiprimes mit verschiedenen Primfaktoren in der RSA-Verschlüsselung benutzt werden. Es geht um Zahlen mit beispielsweise 129 Ziffern (RSA-129) – oder noch mehr Ziffern (RSA-140, …). In dieser Liga spielt 2018 natürlich nicht, zur Familie gehört sie aber.

Deshalb ein kleiner Spaß: Wir RSA-verschlüsseln einen Text mit n = 2018, also p = 2 und q = 1009 (n = p·q). Als zweite Zahl des öffentlichen Schlüsselpaares (n, e) wählen wir e = 521 (Eine willkürliche Wahl, e muss aber teilerfremd zum Wert φ (2018) = (p – 1)·(q – 1) = 1·1008 der Eulerfunktion sein). Wir verschlüsseln also gemäß  y = xe mod n = x521 mod 2018. Dabei ist x das Klartextzeichen, y das entsprechende Zeichen der verschlüsselten Nachricht. Unser Klartext sei ASCII-codiert, er besteht damit aus Blöcken x mit je zwei Ziffern. Der Einfachheit halber beschränken wir uns auf den Bereich der ASCII-Codes 32..90. Der Großbuchstabe „A“ (ASCII-Code x = 65) beispielsweise wird zu y = 65521 mod 2018 = 483 verschlüsselt. Um den Zeichen des verschlüsselten Textes eine einheitliche Länge von 4 Stellen zu geben, fügen wir bei dreistelligen Zahlen y links eine Null hinzu. Unsere gesamte verschlüsselte Nachricht lautet (jeder 4-er Block stellt ein verschlüsseltes zweistelliges ASCII-Zeichen dar)2:

0483 0718 0718 0823 0395 1270 0557 0587 1986 0823 1270 1462 0587 0823 1036 1270 0398 0174 0225 1970

Zum Entschlüsseln benötigen wir den geheimen Schlüssel. Der setzt sich zusammen aus n = 2018 und einer Zahl d,  die der Bedingung genügt                d·e  =  1 mod φ (2018) = 1 mod 1008. Das führt zu d = 89. Die ASCII-Zeichen des Klartextes werden also mit Hilfe von x = y89 mod 2018 zurückgewonnen. Beispiel: Das Zeichen y = 0483 des verschlüsselten Textes wird zu x = 48389 mod 2018 = 65 im Klartext, also zum vorhin verschlüsselten „A“. Und jetzt die Hausaufgabe: wie lautet die obige Nachricht im Klartext? Ein guter Taschenrechner und eine ASCII-Tabelle wären bei der Lösung hilfreich. Knobeln führt vielleicht auch zum Ziel – Spaß muss sein.

https://oeis.org
Nochmals: Dies ist ein kleiner Scherz, keine ernsthafte Verschlüsselung.

Erdschatten

CIMG7645_MKlares Wetter und ein wolkenloser Himmel sind gute Voraussetzungen, in der Abenddämmerung den „Erdschatten“ zu sehen. Das Foto wurde kurz nach Sonnenuntergang in Barstow CA, USA (Mojave-Wüste) aufgenommen – Blickrichtung Osten. Der Erdschatten ist das violett-blau-graue Band über dem Horizont, sein oberer, rosarot gefärbter Rand der Widerschein des rot gefärbten Himmels in der Umgebung der im Westen untergegangenen Sonne. Dieser rötliche Gegendämmerungsstreifen wird auch „Gürtel der Venus“ genannt1. Es gibt bessere Fotos dieser Art, den Wettbewerb um das schönste überlasse ich anderen. Hier geht es um die Physik dieser Himmelserscheinung – um Aussagen, die die bisherige Lehrmeinung in Zweifel ziehen2.

Lorenz-Mie- und Rayleigh-Streuung

Portland Maine USA_M

Normalerweise habe ich kein Auge für das, was am Himmel zu sehen ist. Aber dieses gewaltige Wolkengebirge (Abbildung) schien mir ein Foto wert. Beim Druck auf den Auslöser drängte sich die Frage auf: Kannst Du eigentlich erklären, warum die Wolke weiß und der Himmel blau ist (typisch Physiker)? Konnte ich nicht, jedenfalls nicht so, dass ich selber von meinen Argumenten überzeugt war.

Also Literaturstudium, Stichwort Streuung von Licht. Die Theorie dazu, das wusste ich noch, lieferte Gustav Mie1. Aber dann las ich zu meiner Überraschung, dass schon 1890 (18 Jahre vor Mie) der dänische Physiker Ludvig Lorenz2 berechnete, wie eine elektromagnetische Welle an einer dielektrischen Kugel gestreut wird. Die Theorie heißt daher heute Lorenz-Mie-Theorie.

Sie ist mit aufwändigen Rechnungen verbunden. Heftigste Elektrodynamik: Vektor-Kugelfunktionen, Partialwellenentwicklung und dergleichen. Sie ergeben, dass die Streuung von der Größe der Kugel abhängt. Die Wassertropfen einer Wolke haben einen Radius von typischerweise 10 Mikrometer. Teilchen dieser Größe, so die Theorie, streuen alle im Sonnenlicht enthaltenen Wellenlängen mit der gleichen Wahrscheinlichkeit. Sie verändern die farbliche Zusammensetzung des einfallenden Lichts nicht. Eine Wolke strahlt deshalb mit der Summe aller Farben des Sonnenlichts, und die führt zu dem bekannten hellen Weiß. Bei Abschattung wird daraus das weniger geschätzte Grau.

Das Blau des Himmels habe ich bisher mit dem Namen des britischen Physikers Lord Rayleigh verbunden. Man weiß, dass es zustande kommt durch die Streuung des Sonnenlichts an den Luftmolekülen der Atmosphäre. Dabei wird der blaue Anteil des Sonnenspektrums bevorzugt zur Seite abgelenkt. Jetzt lerne ich, dass die Lorenz-Mie-Theorie im Grenzfall sehr kleiner Kugelradien das Strahlungsgesetz der Rayleigh-Streuung ergibt. Die Moleküle der Luft sind mehr als 5000mal kleiner als Nebeltropfen und können offenbar als derart kleine Kugeln betrachtet werden. Man kann sie aber auch als winzige elektrische Dipole auffassen, die von der elektromagnetischen Welle des Lichts in Schwingungen versetzt werden und daraufhin ihrerseits Licht emittieren. Dabei ergibt sich wiederum, dass der blaue Anteil bevorzugt abgestrahlt wird.

Jedenfalls erblicken wir am wolkenlosen Himmel das bevorzugt gestreute Blau, auch senkrecht zur Strahlrichtung der Sonne. Bei direktem Blick in die untergehende Sonne sehen wir den rot-gelben Anteil des Sonnenspektrums, der blaue Anteil wurde in der Atmosphäre herausgestreut.

Die Theorie ist umfangreich (wie angedeutet). Das Ergebnis sind Formeln für die Wahrscheinlichkeit, mit der Licht an (z. B.) Wassertropfen gestreut wird. Mit Hilfe eines Computeralgebrasystems berechnet man, wie sie bei gegebener Tropfengröße von der Wellenlänge abhängt – hier mehr dazu. Einiges aus der Theorie habe ich nachgerechnet, zum Beispiel die Herleitung der Formeln für die Mie-Koeffizienten. Sie ergeben sich aus den Randbedingungen für die Feldstärken an der Grenzfläche zwischen Tropfen und Außenraum. Dann die Bornsche Näherung. Sie ist für Wassertropfen aber nicht anwendbar – der Brechungsindex von Wasser (1.33) weicht zu sehr von 1.00 ab. Interessant ist, dass die Lorenz-Mie-Streuung im Grenzfall kleiner Tropfengröße in die Rayleigh-Streuung übergeht. Dies wird hier behandelt.

1  Gustav Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. In: Annalen der Physik. Vierte Folge, Band 25, 1908, Heft 3, S. 377–445,

2  Ludvig Valentin Lorenz (dänischer Physiker, 1829 – 1891): Artikel (in Dänisch) in Det Kongelige Danske Videnskabernes Selskabs Skrifter, 1890. Ludvig V. Lorenz ist nicht zu verwechseln mit dem Niederländer Hendrik Antoon Lorentz (1853 – 1928). Beide lieferten wichtige Beiträge zur Elektrodynamik und Relativitätstheorie. Die Lorenz-Eichung, das steht heute fest, geht auf den dänischen Physiker zurück, nicht auf den Niederländer.