Kategorie: Verschiedenes

Klever Fluchtlinien

Vom Kriegerdenkmal auf dem Klever Sternberg sieht man bei gutem Wetter, durch eine Schneise im Wald blickend, am fernen Horizont den Kirchturm von St. Vitus in Hoch-Elten. In der Sichtlinie zur Kirche liegt im Vordergrund das von Bäumen gesäumte Wasserbecken eines Kanals, den Johann-Moritz von Nassau-Siegen seinerzeit anlegen ließ.
Schaut man etwas genauer hin, bemerkt man, dass sich die Fluchtlinien der Kanalufer und die der Baumreihen links und rechts des Wasserbeckens am Ort der Eltener Kirche treffen – eine, wie man liest, von Johann-Moritz gewollte Landschaftsgestaltung in Form einer Sichtachse. Für mich eine Gelegenheit, mein Java-Programm Zentralperspektive nochmals zu testen. Einen ersten Test hatte es schon bestanden: Der Blick in eine abschüssige und in der Ferne wieder ansteigende Straße in San Francisco wurde perspektivisch richtig wiedergegeben. Im vorliegenden Fall ist die Situation ähnlich. Das Gelände längs der Sichtlinie fällt zunächst ab, verläuft dann im Bereich des Kanals und der Rheinebene in der Horizontalen, und steigt erst nach mehreren Kilometern bis auf die Höhe des Eltener Berges wieder an.
Zum Test lasse ich das Programm die perspektivische Ansicht des Kanals und die der Baumreihen links und rechts des Kanals berechnen – und, unabhängig davon, die Lage des Bildpunktes der Eltener Kirche. Der Kanal wird durch ein langgezogenes Rechteck angenähert, mit zur Sichtlinie parallelen Längsseiten.

Das Programm benötigt als Eingabedaten die Eckpunkte des Kanal-Rechtecks und die Lage der Kirche in der realen Welt. Es verarbeitet die Daten nach den Gesetzen der Zentralperspektive und gibt die folgenden, in das nebenstehende Foto hineinkopierten geometrischen Gebilde aus: die Umrisse des Kanals (ein zum Trapez perspektivisch verkürztes Rechteck), die Linien der Baumreihen links und rechts des Kanals und die Lage des Bildpunktes der Eltener Kirche (rotes Kreuz). Die horizontale blaue Linie kennzeichnet die Höhe, in der sich der Wasserspiegel des Rheins befinden müsste. Die in das Foto zusätzlich hineinkopierten grünen Linien sind die Achsen eines Koordinatensystems, deren Schnittpunkt der Durchstoßpunkt der Sichtlinie durch die Bildebene ist (Augenpunkt). Die horizontale Achse dieses Systems ist der Horizont.

Die Längsseiten des Kanal-Rechtecks und die Linien der Baumreihen werden verlängert und treffen sich in einem gemeinsamen Fluchtpunkt. Dieser liegt, da die Linien in der realen Welt parallel zur Blickrichtung und horizontal verlaufen, im Augenpunkt auf dem Horizont. Wie zu erwarten liegt dort, zumindest in grober Näherung, auch der Bildpunkt der Eltener Kirche (rotes Kreuz). Genau genommen liegt der Bildpunkt auf der Senkrechten durch den Augenpunkt, und zwar minimal (und daher kaum erkennbar) oberhalb des Horizonts, da die Kirche in der realen Welt einige Höhenmeter mehr als der Kamera-Standort aufweist.

Das Foto zeigt im Übrigen, dass der Kamera-Standort in horizontaler Richtung nicht exakt in Kanalmitte liegt. Der Kanal wurde deshalb etwas weiter nach links verschoben (durch Änderung der X-Koordinaten seiner Eckpunkte). Berechnung und Foto stimmten danach besser überein, exakte Deckungsgleichheit ließ sich nicht herstellen. Die (kleine) Korrektur äußert sich in der seitlichen Verschiebung der vertikalen grünen Koordinatenachse gegenüber der Mitte des Kanals – und gegenüber der Statue vorne im Bild (Balkenhols »Neuer Eiserner Mann«).

Insgesamt betrachtet, gibt es zwar kleine Abweichungen zwischen Theorie und Praxis, beispielsweise zwischen dem im Foto abgebildeten und dem theoretisch berechneten Kanalufer. Aber abgesehen davon wird die reale Welt durch das Programm richtig in die Bildebene transformiert. Das Programm hat einen weiteren Test bestanden. Eine ausführlichere Beschreibung des Tests hier.

Es gibt im Übrigen in Kleve weitere Schneisen, Wege und Alleen, die auf markante Bauwerke oder Landschaftspunkte ausgerichtet sind, beispielsweise die „Galleien“ in der Ebene des Kermisdal-Bogens. Sie wurden auch von Johann-Moritz angelegt. 

Batschkapp

Merk dir doch einfach „Batschkapp”. Wie bitte? – Mich hat es zum Studium vom Niederrhein nach Hessen verschlagen und ich tüftele zusammen mit Gleichgesinnten an einer Übung in Vektorrechnung. Der Ratschlag des Kommilitonen ist gut gemeint, aber er spricht eine mir fremde Sprache. Es geht um das Kreuzprodukt dreier Vektoren. Die Vektoren A, B und C, miteinander kreuzmultipliziert, ergeben B mal Skalarprodukt von A und C  minus C mal Skalarprodukt von A und B. Als Formel geschrieben  A×(B×C)  =  B(A·C) – C(A·B). Mit „Batschkapp” ist offenbar die rechte Seite der Gleichung gemeint1. Ich buchstabiere also „B” = B, „a” = A, „tsch” = C, „k” = C, „a” = A und schließlich „pp” = B. Macht tatsächlich Sinn und half damals bei Klausuren enorm.

Und nun zur Bedeutung: Batschkapp – eine Kappe, die man sich über den Schädel „patscht”, um das Haupt vor unfreundlichem Wetter zu schützen? Ich war mir nicht sicher. Als Eselsbrücke spielte die Bedeutung ja auch keine Rolle (damals lebte Ms. Google noch nicht). Heutzutage ist klar: „Batschkapp” heißt in Mainfranken die Schiebermütze (Wikipedia). Auch in Südhessen spricht man diese Sprache. Denn ich lese mit großer Rührung in Rainer Witts Büchlein „Wenn’s dreimal pfeift, gibt’s Ärger – Geschichten und Anekdoten aus Darmstadt”, dass Papa Behrend vom Knusperhäuschen in der Dreibrunnenstraße eine „Batschkapp” besaß. Die setzte er immer dann auf, wenn er den Hof zwischen Küche und Gaststube überquerte. Das kann ich bestätigen: Als Student war ich, wiederum mit Gleichgesinnten, oft im Knusperhäuschen. Ein Höhepunkt des Abends war Papa Behrends Performance beim Nachfüllen unserer Gläser: Er nahm die Flasche (Wein der Hausmarke „von Woellm”), brachte sie über dem Glas blitzschnell in die Senkrechte, Öffnung nach unten, und unterhielt sich mit uns über das Wetter. Es gluckerte kurz, aber intensiv, und nach dem Wetterbericht war das Glas voll und die Flasche wieder in Normallage – eine Sache von Sekunden. Es gab Abende, da hörten wir den Wetterbericht mehrmals. Hätte ich damals Papa Behrends Kappe vor Augen gehabt, wäre die Vektorrechnungsklausur vielleicht besser ausgefallen.      

1  Die Variante (A×BC  =  B(A·C) – A(B·C)  ist leider nicht „Batschkapp”-kompatibel.

 

Finnland und Schweden – 1958 mit den Pfadfindern

Ein Nachtrag zu dem Rückblick auf eine Fahrt nach Finnland und Schweden (Torneträsk 1958), an der ich als Pfadfinder teilnahm. Wir zelteten eine Woche auf einer Insel in einem See in Finnland und fuhren danach in den Norden Schwedens, um dort zu wandern. Das Foto entstand bei dieser Wanderung, irgendwo zwischen Kiruna und Abisko.

Die Dias, die damals gemacht wurden, habe ich jetzt digitalisieren lassen. Hier eine kleine Auswahl:

2020 – das Jahr mit dem Pfiff

Eine etwas skurrile Performance: Wir beginnen das neue Jahr mit einem mit den Lippen erzeugten Pfeifton der Tonhöhe (Frequenz) von genau 2020 Hertz (typischer Einfall eines Physikers). In meinem PC ist, wie üblich, ein Mikrofon eingebaut, dessen Signal in einer Soundkarte digitalisiert wird. Das digitalisierte Signal wird nach der Tonhöhe sortiert (Fourier-analysiert) und das Spektrum der Tonhöhen auf dem Bildschirm dargestellt. In dieser Anordnung lässt sich die Frequenz des Pfeiftons messen. Ich beobachte also, während ich drauflos pfeife, das Tonhöhengebirge auf dem Computer-Bildschirm. Änderungen in der Lage von Zunge und Unterkiefer ergeben verschiedene Tonhöhen. Nach etwas Übung zeigt sich tatsächlich ein Matterhorn-ähnlicher Peak bei 2020 Hertz: Treffer (Abbildung oben). – Ein kleiner Mangel: Das Matterhorn dürfte etwas schroffer sein. Physiker bevorzugen Peaks mit steileren Flanken. Peaks mit Flanken in Eiger-Nordwand-Qualität bedeuten, dass der Ton sehr rein ist. Auch damit kann ich dienen – allerdings mit einer anderen Art der Tonerzeugung: Der Deckel meiner Edelstahl-Teekanne sieht in etwa aus wie eine Glocke und klingt auch so. Beim Anschlag mit dem (Tee-)Löffel schwingt er mit einer ganzen Reihe von gut definierten Tönen. Per Zufall entdecke ich unter ihnen auch einen mit genau 2020 Hertz. Die untere Abbildung zeigt, dass der 2020 Hertz-Peak der Teekannendeckelglocke sehr viel schlanker ist der mit den Lippen erzeugte.

Ein Maß für die Schlankheit eines Ton-„Gebirges” ist der Quotient aus der Frequenz des Tons und der Breite des Peaks, bei der die Leistung auf den halben Wert des Maximums abgefallen ist. Dieser Quotient wird Güte Q (des schwingenden Systems) genannt. Ohne auf die Physik einzugehen: In unserer Darstellung der Intensität pro Frequenzintervall in der Einheit Dezibel (dB) ist die Breite bei halber Leistung die horizontale Ausdehnung des „Gebirges” 3 dB unterhalb des Gipfels. Danach hat das gepfiffene „Matterhorn” in Abbildung 1 eine Breite von etwa 18 Hz. Daraus folgt eine Güte von Q = 2020 Hz/18 Hz = 112. Beim Pfeifen schwingt die Mundhöhle als Helmholtz-Resonator, ein Q-Wert von etwa 100 erscheint in diesem Fall plausibel. Der Peak meiner Teekannendeckel-„Glocke” mit seinen „Eiger-Nordwand”-Flanken (Abbildung 2) hat eine Breite von rund 5,8 Hz und ergibt Q = 2020 Hz/5,8 Hz = 348, ein gegenüber dem Pfeifton dreifach größerer Wert. Der Q-Wert einer Kirchenglocke ist offenbar noch einmal um einen Faktor 3 bis 5 größer: Das mir vorliegende Spektrum1 eines Glockentons der Frequenz 697,5 Hz zeigt beispielsweise eine 3dB-Breite von 0,65 Hz, also Q = 1073. Eine andere Arbeit2 nennt Q-Werte von 1300, 1000 und 2000 bei den Frequenzen 624 Hz, 981 Hz  bzw. 1310 Hz.

Als Kurzwellen-Amateur fühle ich mich natürlich verpflichtet, die Zahl 2020 auch im Kilohertz-Bereich zu realisieren: Hier die Beschreibung eines HF-Kreises aus Kondensator und Spule, der mit der Frequenz 2020 kHz schwingt.

1   J. Bauer: Ursachen des Missklangs von Glocken. Diplomarbeit, Fachhochschule Heidelberg, Fachbereich Informatik, Studiengang Elektrotechnik und md-pro GmbH Karlsruhe, Heidelberg 2003.

2  J. Woodhouse et al.: The Dynamics of a Ringing Church Bell, Advances in Acoustics and Vibration, Volume 2012, Article ID 681787, doi:10.1155/2012/681787

 

Neues Bauen in Gladbach-Rheydt

Noch ein Beitrag zum Jubiläum 100 Jahre Bauhaus: In meiner Heimatstadt Rheydt, damals Gladbach-Rheydt, steht etwas abseits der Straße das Schülerinnenwohnheim des Maria-Lenssen-Berufskollegs. Ein Highlight des Neuen Bauens, auch wenn es mit keinem der großen Namen Gropius, Meyer oder Mies van der Rohe verknüpft ist. Entworfen hat es der preußische Regierungsbaumeister Bruno Kleinpoppen, der Bau wurde Anfang der 30-er Jahre fertiggestellt. Inwiefern in dem Gebäude die Ideen des Bauhauses verwirklicht wurden, hat Birgit Gropp1 in hervorragender Weise beschrieben.

Als Beitrag zum Jubiläum nehme ich mir vor,  das Bauwerk noch einmal zu fotografieren – als bescheidene, aber persönliche Hommage an den Baumeister. Eine Gesamtansicht, wie ich sie von den Postkarten meiner Eltern her kenne, schwebt mir vor. Vor Ort stelle ich fest, dass daraus nichts wird: Bäume und Sträucher verdecken den Blick auf die volle Länge. Also nehme ich eine der alten Ansichtskarten hervor und zeichne das Gebäude ab.

1 Birgit Gropp: In Neues Bauen im Westen, https://www.baukunst-nrw.de

Durchblicke

… durch die Vorhangfassade am Bauhaus Dessau – fotografiert bei einem Besuch anlässlich des Jubiläums 100 Jahre Bauhaus. Wir werden durch das Bauhaus-Gebäude und die Meisterhäuser geführt. Dabei muss man dem Rudel folgen, so dass zum Fotografieren wenig Zeit bleibt. Die Ausbeute an guten Fotos ist deshalb dürftig. Hier einige Bilder zum Thema Glasfassade. Übrigens ist die Vorhangfassade (engl. curtain wall facade) keine Erfindung des Bauhauses. Die ersten Gebäude in Skelettbauweise mit vorgehängter Glasfassade wurden um 1900 gebaut.

Käfer auf Reise – 1969

Vor 50 Jahren (kleine Notiz zum Jubiläum): Eine Reise durch die USA mit dem VW-Käfer. Dauer etwa ein Monat, zurückgelegte Strecke 15000 km. Fotos (von links oben im Uhrzeigersinn): Abilene (Texas), Death Valley, Bluff (Utah), Yosemite Park, Rocky Mountains.

Route: New Haven  – New Orleans – El Paso – Mesa Verde Natl Park – Monument Valley – Grand Canyon – Las Vegas – Death Valley – Los Angeles (Disneyland) – Monterey – San Francisco – Yosemite Natl Park – Salt Lake City – Grand Teton Natl Park – Yellowstone Natl Park – Devils Tower – Mt Rushmore – Badlands – Chicago – New Haven.  Siehe auch hier.

Aus Neu mach Alt

Der neugotische Harkness Tower der Yale-Universität in New Haven, CT (USA) ist schon eine Nachbildung. Er wurde nicht im Mittelalter, sondern in den Jahren 1917 bis1921 gebaut.  Ich setze noch eins drauf: ein aktuelles Foto des Gebäudes wird auf alt getrimmt – „vintage look eines retro-Bauwerks“. Dazu benötigt man zunächst eine seitenverkehrte scharz-weiß-Kopie des Fotos. Die stellt mein Laserdrucker her.  Ich lege ein etwas dickeres Papier bereit (etwa 200 g/m2), mindestens so groß wie die Fotokopie. Kopie und Papier werden mit Acryl-Binder bestrichen, mit der Klebeseite aufeinander gelegt, und mit viel Druck aufeineinander gepresst. Eine Gummiwalze hilft dabei. Ein heißes Bügeleisen sorgt nochmals für Druck und erhitzt den Binder, der dadurch austrocknet. Ich lasse das Papier-Sandwich noch etwas an der Luft trocknen und ziehe dann die Fotokopie vorsichtig ab: Mit etwas Glück befindet sich jetzt auf dem Papier eine (seitenrichtige) Kopie der (seitenverkehrten) Fotokopie. Kleine Bereiche, die nicht übertragen wurden, verstärken den vintage-Eindruck. Ich koloriere die Kopie der Fotokopie auf dem Papier mit Aquarellfarbe und bessere dabei die Übertragungsfehler aus. Das Ergebnis ist das Bild links.

MAN WALKS ON MOON …

schreibt die New York Times1 am 21. Juni 1969 – in mehr als 4 Zentimeter großen Lettern. Das war vor fünfzig Jahren, da ist eine kleine Notiz angebracht.

Ich arbeitete damals als Physiker am Electron Accelerator Lab der Yale-Universität in New Haven, Connecticut (USA). Es ist Sonntag, der 20. Juli 1969. Mäßiges Wetter: Sonne, Wolken und, nicht unwichtig, Windstärke 4 bis 5. Denn ein Arbeitskollege lädt mich ein, mit ihm segeln zu gehen. Ich darf in seinem Boot die Fock bedienen. Der Yale Corinthian Yacht Club (YCYC) stellt seine Segeljollen an Feiertagen den Angestellten der Universität zur Verfügung. Davon machen einige sportlich gesinnte faculty-Leute Gebrauch und veranstalten Rennen auf dem Long Island Sound. An diesem Tag hat jedes Boot mindestens ein Transistorradio an Bord. Man ruft sich die neuesten Nachrichten zu, trotz Wettkampf. Die Meldung von der Landung (4.17 Uhr p.m. Eastern daylight time) dringt aber nicht bis zu uns durch – das Manöver, die letze Boje des Dreieckskurses zu umrunden erfordert unsere Aufmerksamkeit. Den historischen Zeitpunkt erfahren wir später von einem Boot, das querab segelt und uns gerade überholt. Am nächsten Morgen ist die New York Times so gut wie ausverkauft. Ich erstehe das letze von drei Exemplaren, die in der Lobby des Taft-Hotels ausliegen.

1 US-amerikanische Tageszeitung, erklärte Gegnerin von Donald Trump (Zitat des Herausgebers A.G. Sulzberger: „Wir werden [vor Trump] nicht auf die Knie fallen“, in DIE ZEIT vom 2. Mai 2019) – gut so.