Physik als Hobby

2019 – ein (Oster-)paradoxes Jahr

Vollmond_Osterdatum_01Dieses Jahr ist es der Kalender, der aus dem Rahmen fällt: 2019 feiern wir Ostern nicht an dem Tag, an dem das Fest eigentlich stattfinden sollte – 2019 ist ein Jahr mit einem Oster-Paradox.

Ostern, so lernt man, fällt auf den ersten Sonntag nach dem ersten Vollmond nach Frühlingsanfang. Der Frühlingsanfang ist der Zeitpunkt, an dem die Sonne auf ihrer Bahn den Himmelsäquator aufsteigend durchstößt. Der so definierte astronomische Frühlingsanfang kann auf den 19., 20. oder 21. März fallen. Aber Ostern ist ein christliches Fest, deshalb hatte die Kirche ein Mitspracherecht bei der Terminvergabe: sie legte den Frühlingsanfang unverrückbar auf den 21. März. Das geschah schon im Jahr 325 auf dem Konzil von Nikäa (heute Iznik, Türkei). Im Zuge der Kalenderreform 1582 wurde zudem ein Rechenverfahren erarbeitet, das die Vollmondphasen näherungsweise vorhersagt. Es wurde zur Festlegung des Osterdatums verbindlich vorgeschrieben und ist als Datumsregel nach dem Kirchenzyklus bekannt. Später entwickelte C. F. Gauss aus dieser Regel einen Algorithmus, nach dem sich das Osterdatum berechnen lässt.

Diese Regel führt 2019 zu einer ungewöhnlichen Situation: Der astronomische Frühling beginnt am 20. März 2019, 22:58 Uhr MEZ, also durchaus normgerecht. Das Problem beginnt damit, dass unser Trabant schon kurz danach (also kurz nach dem 20. März, 22:58 Uhr MEZ) die Phase „Vollmond” erreicht, nämlich am 21. März, 2:43 Uhr MEZ. Ostern müsste daher, astronomisch gesehen, auf den darauf folgenden Sonntag, den 24. März fallen. Tatsächlich ist aber nach dem Kirchenzyklus (und nach dem Rechenverfahren von Gauss) Ostern am 21. April, also vier Wochen später. Diese Datumsverschiebung ist das Oster-Paradox.

Es ist interessant, die astronomischen Daten am (Personal-)Computer nachzurechnen. Dazu gibt es in der Literatur Programme, zum Beispiel die von O. Montenbruck und Th. Pfleger1. Mehr zum Osterparadoxon und zu den Computer-Rechnungen hier.

1  Oliver Montenbruck und Thomas Pfleger: Astronomie mit dem Personal Computer, 3. Auflage, J. Springer, Berlin-Heidelberg-NewYork, 1999. Ein hervorragendes Buch, nicht nur für Experten.

Experimente mit einem Prisma

Apparatur_CIMG1831_MMEin Sonnenstrahl fällt durch das Fenster auf die geschliffene Kante eines Glastischs, wird dort abgelenkt und in die Farben des Regenbogens zerlegt. Die Frage ist, ob Licht aus anderen Lichtquellen sich ähnlich verhält – zum Beispiel Licht aus einer Leuchtstoffröhre, die mit Helium gefüllt ist. Also muss ein physikalisches Experiment her: wir beleuchten einen Spalt mit dem Licht einer Helium-Leuchtstoffröhre, bündeln das Licht, das aus dem Spalt austritt, zu einen Strahl und lassen es schräg auf unsere „Glaskante” fallen. Die Glaskante ersetzen wir durch einen Glaskörper mit zwei geschliffenen Flächen, die unter spitzem Winkel zusammentreffen. Ein solcher Körper hört auf den Namen Prisma. Wie die Glaskante lenkt das Prisma den Strahl ab und fächert ihn nach den Farben des Regenbogens auf. Zur Beobachtung benutzen wir ein Fernrohr. Das heißt, wir fokussieren den aufgefächerten Strahl in die Brennebene einer Sammellinse und schauen uns das dort entstandene Bild mit einer Lupe an. Das Ergebnis: im Licht des Heliums ist nicht der ganze Regenbogen vertreten. Es gibt zwar an einigen Stellen Linien mit den Farben, die der Regenbogen an ihrer Position hätte, aber nicht den kontinuierlichen Übergang vom Rot über das Gelb und Grün zum Blau und Violett. Der Einsatz rechts unten in der Abbildung zeigt die Linien des Heliums, andere Atome identifizieren sich durch andere „Spektrallinien”. Zur Erklärung der Regenbogenfarben und der Spektrallinien muss man in die Quantenmechanik einsteigen. Das ersparen wir uns hier.
Den Winkel, unter dem die Spektrallinien erscheinen, misst man mit einem Prismenspektrometer. Aus dem Winkel berechnet man die Wellenlänge der zur Linie gehörenden Strahlung. Die Abbildung zeigt ein Gerät, das zu Unterrichtszwecken an Schulen und Hochschulen verwandt wird. Das Prisma befindet sich unter der Abdeckkappe in der Mitte des kreisförmigen Tischs mit dem Teilkreis. Dieser Tisch ist um seine vertikale Mittelachse drehbar. Der Glaskolben rechts im Bild ist die mit Helium unter geringem Druck gefüllte Gasentladungsröhre. Links unten sieht man das Fernrohr zur Beobachtung des Spektrums. Es lässt sich zur Messung des Ablenkwinkels um die Mittelachse des Drehtischs schwenken. Hier mehr über das Prismenspektrometer.

Effektive Federmasse

CIMG1512_MDas Federpendel (Foto): Eine Schraubenfeder, am oberen Ende befestigt, wird am unteren Ende mit einem Gewichtsstück belastet und ein wenig ausgelenkt. Das Gewichtsstück schnellt zurück und schwingt dann auf und ab. Die Schwingungsfrequenz (Kreisfrequenz) ist gleich der Wurzel aus dem Quotienten Federkonstante geteilt durch die Masse des Gewichtsstücks. Das ist richtig, wenn man die Masse der Feder vernachlässigt. In der Regel muss man sie berücksichtigen, ein Bruchteil der Federmasse geht in die Schwingungsfrequenz ein. Man kann diesen Bruchteil, die effektive Federmasse, berechnen. Er sollte abhängen vom Verhältnis Federmasse zu Gewichtsmasse. Meine Messungen zeigen, dass dies in der Tat der Fall ist. Mehr dazu …

Luftdruck

LKGymO02_AZur Wettervorhersage wird das Barometer heute nicht mehr benötigt, die wird schon seit Jahren vom Fernsehen geliefert. Früher wusste man: Fällt der Luftdruck, nähert sich ein Tief, in der Regel bedeutet das schlechtes Wetter. Steigt der Druck, kann man mit einem Hoch und gutem Wetter rechnen. Im Physikunterricht wird gezeigt, dass man das Barometer auch als Höhenmesser benutzen kann. Bekanntlich sinkt der Luftdruck mit steigender Höhe über NN. Und so verläuft die Physikstunde zum Thema Luftdruck:

Das Schulgebäude liegt auf einer Anhöhe, von hier aus lassen sich Punkte unterschiedlicher Höhe über NN bequem erreichen. Unterhalb des Gebäudes, nur wenige hundert Meter vom ihm entfernt, schlängelt sich die Niers (ein Flüsschen) durch ein Schrebergartengelände. Dessen topografische Höhe (vom Messtischblatt abgelesen) ist unsere Null-Marke. Von dort aus zieht die Schüler(innen)-Karawane, mit mehreren Dosenbarometern bewaffnet, bergauf. Wir überqueren eine Straße und machen zunächst Halt am Fuße des Gebäudes. Dort ist eine Höhenmarkierung eingemeißelt, die übernehmen wir ins Messprotokoll. Wir steigen im Gebäude weiter nach oben, zum Schluss durch das Dachgebälk bis in das Türmchen oben auf dem Dach des Bauwerks. Dessen Höhe über NN wurde der Schule irgendwann einmal vom Landesvermessungsamt mitgeteilt – ein weiterer Höhen-Fixpunkt. Unterwegs wird mehrmals der Luftdruck gemessen, an den genannten Punkten und an weiteren Stellen, deren Höhen wir interpolieren. Protokolliert wird, für jedes Barometer getrennt, die Differenz zur Messung an der Null-Marke. Am Ende sind wir insgesamt 50 m hochgestiegen und der Luftdruck ist um 6 mbar gesunken – ein Wert, der deutlich von Null verschieden ist und sogar mit der Therie übereinstimmt. Mehr zu Theorie und Experiment …

Das Foto des Schulgebäudes (Höhe des Türmchens auf dem Dach: 104 m über NN) wurde mit einer Lochkamera aufgenommen. Brennweite (Abstand Lochblende-Fotoplatte) f = 25 cm, Durchmesser der Lochblende D ≅ 0,35 mm, Belichtungszeit etwa 6  min.

Gekoppelte Pendel

CIMG1091_MCondons Uhrenexperiment1 fand ich schon beim ersten Lesen seines Artikels faszinierend. Es ging um die Frequenzen der Normalschwingungen zweier gekoppelter Oszillatoren. In Condons Experiment waren diese Oszillatoren das Unruh-Drehpendel der Uhr und deren (drehbar gelagertes) Gehäuse. Sie sind durch die Rückstellfeder der Unruh gekoppelt. Die Frequenzen der Normalschwingungen hängen davon ab, wie stark die Oszillatoren gekoppelt und wie weit sie gegeneinander verstimmt sind. Meine eigenen Versuche zeigten, dass man Condons hyperbelartige Frequenz-Kurven auch bei gekoppelten Fadenpendeln beobachtet. Bei diesen Versuchen waren die Massen der Pendelkörper verschieden groß. Nach den ersten zaghaften Experimenten hier das Ergebnis einer weiteren Messung mit Pendeln gleicher Masse – ich wollte sicher sein, dass die Hyperbeln auch in diesem Fall beobachtet werden. Das waren sie. Das Foto zeigt die Anordnung der Fadenpendel. Die Kopplungsfeder bestand aus dünnem Eisendraht und ist deshalb kaum erkennbar.

1 E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, American Journal of Physics. 16, 14 – 16 (1948).

Kugelfunktionen . . .

Daniel Kehlmann beschreibt die Szene in seinem Buch „Die Vermessung der Welt” mit hintergründigem Humor: Carl Friedrich Gauß und Alexander von Humboldt unterhalten sich über das Magnetfeld der Erde. Humboldt brüstet sich damit, mehr als zehntausend Messungen des Feldes gemacht zu haben. Gauß entgegnet cool, Daten heranschleppen reiche nicht, man müsse auch denken – und lässt „leise lachend” die Bemerkung fallen: „Einfache Kugelfunktionen”. Weiter heißt es dann: „Kugelfunktionen. Humboldt lächelte. Er hatte kein Wort verstanden.”

Geomagnetischer_Pol_02Kugelfunktionen sind für mich nicht das Problem, aber was Gauß mit „denken” meint, war mir dann doch nicht so ganz klar. Also Literaturstudium. Was mir zum Verständnis wichtig erschien, habe ich hier zusammengestellt.

Gauß stellte die Magnetfeldstärke als Summe von Kugelfunktionen dar und bestimmte die Anteile der einzelnen Summanden so, dass die damaligen Messwerte (zum Beispiel die von Humboldt) richtig wiedergegeben wurden. Das macht man auch heute noch so – mit den aktuellen Messwerten.  Dabei ergibt sich, dass eine einzige Kugelfunktion in dieser Summe überwiegt. Sie beschreibt ein Feld, das außerhalb der Erde wie das eines gigantischen Stabmagneten aussieht (ein Dipolfeld). In diesem Feld gibt es zwei gegenüberliegende Orte auf der Erde, an denen die magnetischen Feldlinien senkrecht aus der Erde austreten bzw. wieder eintreten: die magnetischen Pole. Da man den Verlauf der Feldlinien kennt, kann man aus den Messwerten von Deklination und Inklination an einem beliebigen Ort der Erde die Position des magnetischen Nord- bzw. Südpols näherungsweise errechnen. Die Abbildung zeigt, dass man dazu etwas sphärische Trigonometrie benötigt. Mehr dazu steht auch hier.

Condons Uhrenexperiment

N_Schwingungen_gekoppelter_Pendel__FrequenzenEine interessante Anwendung der Theorie gekoppelter Schwingungen wurde vor etwa 70 Jahren von E. U. Condon (in Zusammenarbeit mit P.E. Condon) vorgestellt1 – das Problem geht offenbar zurück auf eine noch ältere Arbeit von Lord Kelvin2. Es ging um die Frage, in welcher Weise der Gang einer Taschenuhr durch (Dreh-)Schwingungen ihres Gehäuses beeinflusst wird. Ein entsprechendes Experiment sollte darüber Aufschluss geben.

Das Ergebnis war, dass der Gang der Uhr in der Tat durch die Kopplung zwischen dem “Schwungrad” des Uhrwerks (dem Unruh-Ring) und dem Gehäuse beeinflusst wird. Diese Kopplung wird durch die Spiralfeder hergestellt, die das Rückstellmoment für den Unruh-Ring liefert. Es gibt also Abweichungen im Gang der Uhr von der Zeit, die gemessen wird, wenn das Gehäuse gegen Drehung fixiert ist. Und zwar so, dass die Uhr schneller geht, wenn die Eigenfrequenz des Gehäuses kleiner ist als die der Unruh, und dass sie langsamer geht, wenn die Gehäuse-Eigenfrequenz größer als die der Unruh ist.

Das Condon’sche Uhrenexperiment faszinierte mich, als ich vor Jahren zum ersten Mal davon erfuhr. Jetzt, nach langer Zeit, ein bescheidener Versuch, die Physik des Experiments nachzuvollziehen – soweit das mit einfachen Mitteln möglich ist. Die Idee: ein Modell-Experiment mit zwei durch eine Spiralfeder gekoppelten Fadenpendeln. Keine Simulation, die wäre wegen des großen Massenunterschieds zwischen Gehäuse und Uhrwerk-Unruh zu aufwändig gewesen. Die eigenen Versuche dazu waren trotzdem interessant. In der Abbildung sind die Frequenzen f der Normalschwingungen zweier gekoppelter Fadenpendel aufgetragen, von denen eines das “Uhren”-Pendel, das andere das “Gehäuse”-Pendel darstellte. Sie sind aufgetragen als Funktion der Eigenfrequenz f1 des “Gehäuse”-Pendels.

1  E. U. Condon und P. E. Condon: Effect of Oscillations of the Case on the Rate of a Watch, A. J. Phys. 16, 14 – 16  (1948)
2  Lord Kelvin: Popular lectures and addresses, MacMillan 1894

Physik und Intuition

CIMG1040Zwei Gleiter auf einer Luftkissenbahn, durch eine Spiralfeder verbunden und außen durch je eine weitere Feder fixiert: Das ist der Prototyp des Versuchs Gekoppelte Pendel. Er gehört zum Pflichtprogramm im physikalischen Grundpraktikum, dort wird er meist mit Fadenpendeln realisiert. In unserem Fall (Foto) haben die Gleiter die gleiche Masse. Zwischen ihnen sind zwei parallel wirkende Federn angebracht, während die äußeren Federn Einzelfedern sind. Da alle Federn von gleicher Art sind, hat die Parallelschaltung zwischen den Gleitern gegenüber den Einzelfedern außen die doppelte Federkonstante. Eine einzelne Feder hätte auch genügt. Die gesamte Anordnung ist jedenfalls symmetrisch bezüglich der Mittelachse zwischen den Gleitern.
Die Hin- und Herbewegung (Schwingung) der Gleiter ist im allgemeinen Fall kompliziert, trotz der symmetrischen Anordnung. Es gibt jedoch zwei Arten von Schwingungen, die sich dadurch auszeichnen, dass sie synchron ablaufen: Eine „Gleichtaktschwingung” der Gleiter, bei der sich diese mit konstantem Abstand nach links und rechts bewegen, und eine „Gegentaktschwingung”, bei der sie sich aufeinander zu und voneinander weg bewegen1. Diese beiden Schwingungsmoden, genannt Normalschwingungen, würde man in gewisser Weise auch intuitiv „verstehen”.
Wie aber verhält es sich, wenn die Symmetrie gestört ist – etwa dadurch, dass die Gleiter unterschiedliche Masse haben? Natürlich gibt es auch dann Normalschwingungen. Aber kann man auch das “intuitiv” verstehen? Nicht unbedingt, meine ich. Wir rechnen nach und vergleichen das Ergebnis mit dem Experiment. Mehr dazu und ein weiteres Experiment.

1 physikalisch exakt müsste man die Schwingungen der Gleiter mit “gleichphasig” bzw. “gegenphasig” bezeichnen

Erdschatten

CIMG7645_MKlares Wetter und ein wolkenloser Himmel sind gute Voraussetzungen, in der Abenddämmerung den „Erdschatten“ zu sehen. Das Foto wurde kurz nach Sonnenuntergang in Barstow CA, USA (Mojave-Wüste) aufgenommen – Blickrichtung Osten. Der Erdschatten ist das violett-blau-graue Band über dem Horizont, sein oberer, rosarot gefärbter Rand der Widerschein des rot gefärbten Himmels in der Umgebung der im Westen untergegangenen Sonne. Dieser rötliche Gegendämmerungsstreifen wird auch „Gürtel der Venus“ genannt1. Es gibt bessere Fotos dieser Art, den Wettbewerb um das schönste überlasse ich anderen. Hier geht es um die Physik dieser Himmelserscheinung – um neuere Messungen, die der bisherigen Lehrmeinung möglicherweise widersprechen2.

Lorenz-Mie- und Rayleigh-Streuung

Portland Maine USA_M

Normalerweise habe ich kein Auge für das, was am Himmel zu sehen ist. Aber dieses gewaltige Wolkengebirge (Abbildung) schien mir ein Foto wert. Beim Druck auf den Auslöser drängte sich die Frage auf: Kannst Du eigentlich erklären, warum die Wolke weiß und der Himmel blau ist (typisch Physiker)? Konnte ich nicht, jedenfalls nicht so, dass ich selber von meinen Argumenten überzeugt war.

Also Literaturstudium, Stichwort Streuung von Licht. Die Theorie dazu, das wusste ich noch, lieferte Gustav Mie1. Aber dann las ich zu meiner Überraschung, dass schon 1890 (18 Jahre vor Mie) der dänische Physiker Ludvig Lorenz2 berechnete, wie eine elektromagnetische Welle an einer dielektrischen Kugel gestreut wird. Die Theorie heißt daher heute Lorenz-Mie-Theorie.

Sie ist mit aufwändigen Rechnungen verbunden. Heftigste Elektrodynamik: Vektor-Kugelfunktionen, Partialwellenentwicklung und dergleichen. Sie ergeben, dass die Streuung von der Größe der Kugel abhängt. Die Wassertropfen einer Wolke haben einen Radius von typischerweise 10 Mikrometer. Teilchen dieser Größe, so die Theorie, streuen alle im Sonnenlicht enthaltenen Wellenlängen mit der gleichen Wahrscheinlichkeit. Sie verändern die farbliche Zusammensetzung des einfallenden Lichts nicht. Eine Wolke strahlt deshalb mit der Summe aller Farben des Sonnenlichts, und die führt zu dem bekannten hellen Weiß. Bei Abschattung wird daraus das weniger geschätzte Grau.

Das Blau des Himmels habe ich bisher mit dem Namen des britischen Physikers Lord Rayleigh verbunden. Man weiß, dass es zustande kommt durch die Streuung des Sonnenlichts an den Luftmolekülen der Atmosphäre. Dabei wird der blaue Anteil des Sonnenspektrums bevorzugt zur Seite abgelenkt. Jetzt lerne ich, dass die Lorenz-Mie-Theorie im Grenzfall sehr kleiner Kugelradien das Strahlungsgesetz der Rayleigh-Streuung ergibt. Die Moleküle der Luft sind mehr als 5000mal kleiner als Nebeltropfen und können offenbar als derart kleine Kugeln betrachtet werden. Man kann sie aber auch als winzige elektrische Dipole auffassen, die von der elektromagnetischen Welle des Lichts in Schwingungen versetzt werden und daraufhin ihrerseits Licht emittieren. Dabei ergibt sich wiederum, dass der blaue Anteil bevorzugt abgestrahlt wird.

Jedenfalls erblicken wir am wolkenlosen Himmel das bevorzugt gestreute Blau, auch senkrecht zur Strahlrichtung der Sonne. Bei direktem Blick in die untergehende Sonne sehen wir den rot-gelben Anteil des Sonnenspektrums, der blaue Anteil wurde in der Atmosphäre herausgestreut.

Die Theorie ist umfangreich (wie angedeutet). Das Ergebnis sind Formeln für die Wahrscheinlichkeit, mit der Licht an (z. B.) Wassertropfen gestreut wird. Mit Hilfe eines Computeralgebrasystems berechnet man, wie sie bei gegebener Tropfengröße von der Wellenlänge abhängt – hier mehr dazu. Einiges aus der Theorie habe ich nachgerechnet, zum Beispiel die Herleitung der Formeln für die Mie-Koeffizienten. Sie ergeben sich aus den Randbedingungen für die Feldstärken an der Grenzfläche zwischen Tropfen und Außenraum. Dann die Bornsche Näherung. Sie ist für Wassertropfen aber nicht anwendbar – der Brechungsindex von Wasser (1.33) weicht zu sehr von 1.00 ab. Interessant ist, dass die Lorenz-Mie-Streuung im Grenzfall kleiner Tropfengröße in die Rayleigh-Streuung übergeht. Dies wird hier behandelt.

1  Gustav Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. In: Annalen der Physik. Vierte Folge, Band 25, 1908, Heft 3, S. 377–445,

2  Ludvig Valentin Lorenz (dänischer Physiker, 1829 – 1891): Artikel (in Dänisch) in Det Kongelige Danske Videnskabernes Selskabs Skrifter, 1890. Ludvig V. Lorenz ist nicht zu verwechseln mit dem Niederländer Hendrik Antoon Lorentz (1853 – 1928). Beide lieferten wichtige Beiträge zur Elektrodynamik und Relativitätstheorie. Die Lorenz-Eichung, das steht heute fest, geht auf den dänischen Physiker zurück, nicht auf den Niederländer.