Eine etwas skurrile Performance: Wir beginnen das neue Jahr mit einem mit den Lippen erzeugten Pfeifton der Tonhöhe (Frequenz) von genau 2020 Hertz (typischer Einfall eines Physikers). In meinem PC ist, wie üblich, ein Mikrofon eingebaut, dessen Signal in einer Soundkarte digitalisiert wird. Das digitalisierte Signal wird nach der Tonhöhe sortiert (Fourier-analysiert) und das Spektrum der Tonhöhen auf dem Bildschirm dargestellt. In dieser Anordnung lässt sich die Frequenz des Pfeiftons messen. Ich beobachte also, während ich drauflos pfeife, das Tonhöhengebirge auf dem Computer-Bildschirm. Änderungen in der Lage von Zunge und Unterkiefer ergeben verschiedene Tonhöhen. Nach etwas Übung zeigt sich tatsächlich ein Matterhorn-ähnlicher Peak bei 2020 Hertz: Treffer (Abbildung oben). – Ein kleiner Mangel: Das Matterhorn dürfte etwas schroffer sein. Physiker bevorzugen Peaks mit steileren Flanken. Peaks mit Flanken in Eiger-Nordwand-Qualität bedeuten, dass der Ton sehr rein ist. Auch damit kann ich dienen – allerdings mit einer anderen Art der Tonerzeugung: Der Deckel meiner Edelstahl-Teekanne sieht in etwa aus wie eine Glocke und klingt auch so. Beim Anschlag mit dem (Tee-)Löffel schwingt er mit einer ganzen Reihe von gut definierten Tönen. Per Zufall entdecke ich unter ihnen auch einen mit genau 2020 Hertz. Die untere Abbildung zeigt, dass der 2020 Hertz-Peak der Teekannendeckelglocke sehr viel schlanker ist der mit den Lippen erzeugte.
Ein Maß für die Schlankheit eines Ton-„Gebirges” ist der Quotient aus der Frequenz des Tons und der Breite des Peaks, bei der die Leistung auf den halben Wert des Maximums abgefallen ist. Dieser Quotient wird Güte Q (des schwingenden Systems) genannt. Ohne auf die Physik einzugehen: In unserer Darstellung der Intensität pro Frequenzintervall in der Einheit Dezibel (dB) ist die Breite bei halber Leistung die horizontale Ausdehnung des „Gebirges” 3 dB unterhalb des Gipfels. Danach hat das gepfiffene „Matterhorn” in Abbildung 1 eine Breite von etwa 18 Hz. Daraus folgt eine Güte von Q = 2020 Hz/18 Hz = 112. Beim Pfeifen schwingt die Mundhöhle als Helmholtz-Resonator, ein Q-Wert von etwa 100 erscheint in diesem Fall plausibel. Der Peak meiner Teekannendeckel-„Glocke” mit seinen „Eiger-Nordwand”-Flanken (Abbildung 2) hat eine Breite von rund 5,8 Hz und ergibt Q = 2020 Hz/5,8 Hz = 348, ein gegenüber dem Pfeifton dreifach größerer Wert. Der Q-Wert einer Kirchenglocke ist offenbar noch einmal um einen Faktor 3 bis 5 größer: Das mir vorliegende Spektrum1 eines Glockentons der Frequenz 697,5 Hz zeigt beispielsweise eine 3dB-Breite von 0,65 Hz, also Q = 1073. Eine andere Arbeit2 nennt Q-Werte von 1300, 1000 und 2000 bei den Frequenzen 624 Hz, 981 Hz bzw. 1310 Hz.
Als Kurzwellen-Amateur fühle ich mich natürlich verpflichtet, die Zahl 2020 auch im Kilohertz-Bereich zu realisieren: Hier die Beschreibung eines HF-Kreises aus Kondensator und Spule, der mit der Frequenz 2020 kHz schwingt.
1 J. Bauer: Ursachen des Missklangs von Glocken. Diplomarbeit, Fachhochschule Heidelberg, Fachbereich Informatik, Studiengang Elektrotechnik und md-pro GmbH Karlsruhe, Heidelberg 2003.
2 J. Woodhouse et al.: The Dynamics of a Ringing Church Bell, Advances in Acoustics and Vibration, Volume 2012, Article ID 681787, doi:10.1155/2012/681787