Physik als Hobby

Lorenz-Mie- und Rayleigh-Streuung

Portland Maine USA_M

Normalerweise habe ich kein Auge für das, was am Himmel zu sehen ist. Aber dieses gewaltige Wolkengebirge (Abbildung) schien mir ein Foto wert. Beim Druck auf den Auslöser drängte sich die Frage auf: Kannst Du eigentlich erklären, warum die Wolke weiß und der Himmel blau ist (typisch Physiker)? Konnte ich nicht, jedenfalls nicht so, dass ich selber von meinen Argumenten überzeugt war.

Also Literaturstudium, Stichwort Streuung von Licht. Die Theorie dazu, das wusste ich noch, lieferte Gustav Mie1. Aber dann las ich zu meiner Überraschung, dass schon 1890 (18 Jahre vor Mie) der dänische Physiker Ludvig Lorenz2 berechnete, wie eine elektromagnetische Welle an einer dielektrischen Kugel gestreut wird. Die Theorie heißt daher heute Lorenz-Mie-Theorie.

Sie ist mit aufwändigen Rechnungen verbunden. Heftigste Elektrodynamik: Vektor-Kugelfunktionen, Partialwellenentwicklung und dergleichen. Sie ergeben, dass die Streuung von der Größe der Kugel abhängt. Die Wassertropfen einer Wolke haben einen Radius von typischerweise 10 Mikrometer. Teilchen dieser Größe, so die Theorie, streuen alle im Sonnenlicht enthaltenen Wellenlängen mit der gleichen Wahrscheinlichkeit. Sie verändern die farbliche Zusammensetzung des einfallenden Lichts nicht. Eine Wolke strahlt deshalb mit der Summe aller Farben des Sonnenlichts, und die führt zu dem bekannten hellen Weiß. Bei Abschattung wird daraus das weniger geschätzte Grau.

Das Blau des Himmels habe ich bisher mit dem Namen des britischen Physikers Lord Rayleigh verbunden. Man weiß, dass es zustande kommt durch die Streuung des Sonnenlichts an den Luftmolekülen der Atmosphäre. Dabei wird der blaue Anteil des Sonnenspektrums bevorzugt zur Seite abgelenkt. Jetzt lerne ich, dass die Lorenz-Mie-Theorie im Grenzfall sehr kleiner Kugelradien das Strahlungsgesetz der Rayleigh-Streuung ergibt. Die Moleküle der Luft sind mehr als 5000mal kleiner als Nebeltropfen und können offenbar als derart kleine Kugeln betrachtet werden. Man kann sie aber auch als winzige elektrische Dipole auffassen, die von der elektromagnetischen Welle des Lichts in Schwingungen versetzt werden und daraufhin ihrerseits Licht emittieren. Dabei ergibt sich wiederum, dass der blaue Anteil bevorzugt abgestrahlt wird.

Jedenfalls erblicken wir am wolkenlosen Himmel das bevorzugt gestreute Blau, auch senkrecht zur Strahlrichtung der Sonne. Bei direktem Blick in die untergehende Sonne sehen wir den rot-gelben Anteil des Sonnenspektrums, der blaue Anteil wurde in der Atmosphäre herausgestreut.

Die Theorie ist umfangreich (wie angedeutet). Das Ergebnis sind Formeln für die Wahrscheinlichkeit, mit der Licht an (z. B.) Wassertropfen gestreut wird. Mit Hilfe eines Computeralgebrasystems berechnet man, wie sie bei gegebener Tropfengröße von der Wellenlänge abhängt – hier mehr dazu. Einiges aus der Theorie habe ich nachgerechnet, zum Beispiel die Herleitung der Formeln für die Mie-Koeffizienten. Sie ergeben sich aus den Randbedingungen für die Feldstärken an der Grenzfläche zwischen Tropfen und Außenraum. Dann die Bornsche Näherung. Sie ist für Wassertropfen aber nicht anwendbar – der Brechungsindex von Wasser (1.33) weicht zu sehr von 1.00 ab. Interessant ist, dass die Lorenz-Mie-Streuung im Grenzfall kleiner Tropfengröße in die Rayleigh-Streuung übergeht. Dies wird hier behandelt.

1  Gustav Mie: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. In: Annalen der Physik. Vierte Folge, Band 25, 1908, Heft 3, S. 377–445,

2  Ludvig Valentin Lorenz (dänischer Physiker, 1829 – 1891): Artikel (in Dänisch) in Det Kongelige Danske Videnskabernes Selskabs Skrifter, 1890. Ludvig V. Lorenz ist nicht zu verwechseln mit dem Niederländer Hendrik Antoon Lorentz (1853 – 1928). Beide lieferten wichtige Beiträge zur Elektrodynamik und Relativitätstheorie. Die Lorenz-Eichung, das steht heute fest, geht auf den dänischen Physiker zurück, nicht auf den Niederländer.

Das Demo-Experiment, das mir nie gelang

ElektrFeld2Ladungen_MEine Pflichtübung für den Physiklehrer im Unterricht der Oberstufe: Die Demonstration, dass die Kraft zwischen zwei punktförmigen elektrischen Ladungen quadratisch mit wachsendem Abstand abnimmt. Das Gesetz ist nach Charles Augustin Coulomb benannt und eine der Grundlagen der Elektrizitätslehre. Warum das Experiment auch hart gesottene Physiklehrer zur Verzweiflung treiben kann, erkläre ich hier .

Die Abbildung zeigt Feld- und Äquipotentiallinien in der Umgebung zweier elektrischer Punktladungen. Die Ladungen sind unterschiedlich groß und haben entgegengesetztes Vorzeichen.

Mein persönliches Brix-Kopfermann-Diagramm

Brix_1965Vor zehn Jahren verstarb mein akademischer Lehrer Professor Peter Brix (Foto). In seinem Institut für Kernphysik an der TU Darmstadt war ich lange Zeit tätig. Ein kleiner, persönlicher Rückblick ist da angebracht.

Zumal ich kürzlich in meinen Unterlagen von damals den Entwurf einer Veröffentlichung entdeckte, die mit Optical Isotope Shift and Changes in Nuclear Mean Square Radius überschrieben war. Der Artikel sollte ein Review der bis dahin (1966) erschienen Arbeiten auf dem Gebiet der optischen Isotopieverschiebung werden. Auf diesem Forschungsgebiet arbeitete Professor Brix vor seiner Berufung nach Darmstadt, zusammen mit seinem Lehrer Kopfermann. In Darmstadt setzte er sich mit Erfolg dafür ein, dort einen Elektronen-Linearbeschleuniger zu installieren und gründete eine Forschungsgruppe, die sich mit der Streuung von Elektronen an Atomkernen beschäftigte. Gleichzeitig weitete er die Untersuchungen zur Isotopieverschiebung auf myonische Atome aus, die Experimente dazu wurden am Europäischen Kernforschungszentrum (CERN) in Genf gemacht.

An dem Review durfte ich mitarbeiten, obwohl ich von optischer Isotopieverschiebung so gut wie keine Ahnung hatte. Eine Ehre für mich, denn ich war damals noch ein Lehrling in der Zunft der Physiker: Meine Diplomarbeit, die ich gerade abgeschlossen hatte, betraf Experimente am Elektronenbeschleuniger. Die hatten keinerlei Bezug zur optischen Spektroskopie. Meine Aufgabe bestand dann auch nur darin, bei der Literaturrecherche zu helfen. Ich sollte alle veröffentlichten Daten zur Isotopieverschiebung sammeln und geeignet darstellen. Als Darstellung hatte sich in der Literatur das so genannte Brix-Kopfermann-Diagramm1 durchgesetzt – der Name lässt erkennen, wer damals das Forschungsgebiet weltweit anführte und Standards setzte. Im Brix-Kopfermann-Diagramm wird die Verschiebung der optischen Spektrallinien für ein Isotopenpaar bezogen auf eine Standard-Verschiebung. Das ist die Verschiebung, die man für Atomkerne mit konstanter Ladungsverteilung berechnet, deren Radius mit der dritten Wurzel aus der Massenzahl ansteigt. Diese Größe, in der Abbildung mit βCexp/Cth  bezeichnet, wird als Funktion der Neutronenzahl N  des schwereren der beiden Isotope aufgetragen. Für die meisten Isotopenpaare ist βCexp/Cth  kleiner als 1, das heißt kleiner als für Standard-Atomkerne erwartet. Es gibt jedoch Ausnahmen im Bereich der Seltenen Erden. Dort ist dieser Wert größer als 1 und deutet damit auf große Unterschiede in der Deformation (Abweichung von der Kugelgestalt) der Isotopenpaare hin.

CIMG0748_MMDer Review wurde leider nicht fertiggestellt. Ein englischer Kollege kam uns mit einem umfassenden Rückblick zuvor. Von unserem Entwurf überlebten nur ein paar Schreibmaschinen-Durchschläge mit hineingekritzelten Korrekturen – und das Millimeterpapier mit den Isotopieverschiebungen (Abbildung), die ich bis zum Abbruch der Arbeit gesammelt hatte: Mein persönliches Brix-Kopfermann-Diagramm. Inzwischen überholt, aber ein schönes und passendes Andenken an meinen wissenschaftlichen Lehrer.

Ein anderer Review, den ich einige Jahre später (1972) unter Anleitung von Professor Brix schrieb, wurde dann aber wirklich veröffentlicht. Er betraf die Arbeiten zur unelastischen Elektronenstreuung bei niedrigen Energien2, die bis dato bekannt waren. Die meisten von ihnen wurden am Darmstädter Beschleuniger ausgeführt, an einigen dieser Arbeiten war ich beteiligt. In erster Linie beschäftigte ich mich jedoch mit elastischer Elektronenstreuung. Mit dieser Methode bestimmt man mittlere quadratische Kernradien. Ich versuchte, Kernradiusdifferenzen zwischen Isotopen zu messen – also genau die Größe, die man aus den Daten der optischen Isotopieverschiebung gewinnt. Bei den Isotopen, die ich untersuchte, waren die Kernradiusdifferenzen jedoch so klein, dass ich nur eine obere Grenze angeben konnte.

Heute denke ich mit Wehmut an die Zeit im Institut für Kernphysik zurück. Es war nicht nur in wissenschaftlicher, sondern auch in menschlicher Hinsicht ein Ort, an dem man gerne arbeitete.

1  Brix, P. und H. Kopfermann: Physical Review 85, 1050 (1952) und Reviews of Modern Physics 30, (1958), S. 517
H. Theissen: Nuclear Spectroscopy of Light Nuclei by Low Energy Inelastic Electron Scattering, Springer Tracts in Modern Physics 65, S. 1 (1972).

Is the field of a point charge exactly 1/r² ?

CIMG0720_M…so die Überschrift über einem Kapitel der Elektrostatik in Feynmans Lectures on Physics. Ich war noch Student, als ich den Text zum ersten Mal las. Das 1/r2-Problem ließ mir damals keine Ruhe. Ich musste der Sache auf den Grund gehen. Studierte die Literatur dazu und versuchte, Maxwells Rechnungen nachzuvollziehen. Meine Notizen verarbeitete ich später zu einem kleinen Artikel, der in Physik und Didaktik1 erschien. Hier Maxwells Rechnungen und die Beschreibung eines einfachen Demonstrationsexperiments2 (Foto).

1   H. Theissen:  Ist die Kraft zwischen zwei Ladungen wirklich proportional 1/r2?, Physik und Didaktik 3, 1975, Bayerischer Schulbuch-Verlag, München, S. 57
2   nach Z. Šabatka und L. Dvořák: Two simple ways of verification of the 1/r2 dependence in Coulomb’s law at both high school and university level. Karlsuniversität Prag. Internetadresse unbekannt.

Sterne haben ihre eigene Zeit

2005_11_01_fomalhaut06_MAuch Fixsterne bewegen sich am Himmel – scheinbar, weil die Erde sich um Ihre Achse dreht. Dieser Bewegung muss man entgegenwirken, wenn man sie beispielsweise mit längerer Belichtungszeit fotografieren will. Die Kamera wird nachgeführt, wie man sagt. Der Stern links auf dem Foto (Fomalhaut im Südl. Fisch) ist eine Ausnahme. Er ist hell genug, wurde bei kurzer Belichtungszeit ohne Nachführung fotografiert.

Die Erde braucht für die Drehung um ihre Achse einen vollen Tag. Jeder Stern müsste daher zur gleichen Uhrzeit Nacht für Nacht in derselben Himmelsrichtung zu sehen sein. Stimmt das? Nachfolgend eine Aufgabe aus dem Bundeswettbewerb Physik 2005, die sich mit diesem Problem befasst.

„Stefan beobachtet von seinem Schreibtisch aus, wie ein Stern abends hinter einem Telegrafenmast verschwindet; der Mast befindet sich fast im Süden. Er wiederholt diese Beobachtungen an mehreren Tagen und notiert sich jeweils den genauen Zeitpunkt des Verschwindens des Sterns.“  So beginnt der Text der Aufgabe aus dem Bundeswettbewerb. Nachher wird gefragt, ob der Stern jeden Abend zum selben Zeitpunkt verschwindet. Tut er nicht, um die Antwort vorweg zu nehmen. Sterne haben ihre eigene Zeit, die Sternzeit. Mehr dazu … .

Röntgenbeugung

Röntgenbeugung_Abb_2

 

Es sollte mich nicht wundern, tut es aber: Viele Geräte, die ich als Physiklehrer noch vor einigen Jahren im Unterricht benutzte, sind heute veraltet. Einige mussten verschrottet werden, weil sie die aktuellen Sicherheitsvorschriften nicht mehr erfüllen. Heute gibt es vorschriftsmäßig gebaute, moderne Apparate, die sicher besser sind. Aber auch mit den alten Dampfern ließ sich gut experimentieren. Zum Beispiel mit dem Röntgengerät der Firma P. Das Gerät wurde inzwischen entsorgt. Meine damaligen Messprotokolle zur Röntgenstreuung sind daher von höchstens historischem Wert. Ich habe sie hier, auch aus sentimentalen Gründen, zusammengefasst. Die Abbildung zeigt das Spektrum der Röntgenstrahlung, die aus einer Röhre mit einer Kupfer-Anode austritt.

Licht und Farbe in der Natur

… je nach Tageszeit verschieden. Foto links: morgens, rechts: mittags, Mitte: abends.

USA-Reise1-024-Korrektur_MM

USA_2014_CIMG7867USA-Reise1-025-Korrektur_MMM

 

 

 

 

 

 

 

 

 

Drei Fotos des Grand Canyons, aufgenommen  zu verschiedenen Tageszeiten. Wenn von Licht und Farbe in der Natur die Rede ist, sollte der Hinweis auf zwei Bücher nicht fehlen: Minnaerts Klassiker Light and Color in the Outdoors1 und das modernere Pendant Color and Light in Nature von Lynch und Livingston2. Die Titel deuten es an: Thema ist alles, was sich an optischen Erscheinungen unter freiem Himmel abspielt. Hier ein Versuch, die Bilder im Sinne dieser außergewöhnlichen Physikbücher zu erläutern.

1  Marcel G. J. Minnaert: Light and Color in the Outdoors, Springer-Verlag New York-Berlin-Heidelberg, 1993 (5. Auflage). Es gibt,
soweit ich weiß, eine frühere Übersetzung des in Niederländisch geschriebenen Originals mit dem Titel: The Nature of Light and
Color in the Open Air (Dover Publications, New York, 1954).
2  David K. Lynch und William Livingston: Color and Light in Nature, Cambridge University Press, 1995

 

Fotoeffekt und Plancksche Konstante

 

Fotoeffekt_Graph_24_04_1979Der Versuch zum Fotoeffekt, ein Highlight der Schulphysik, hat einen Nachteil: Er liefert einen zu kleinen Wert für die Plancksche Konstante. Jedenfalls ist das meine Erfahrung1. Versuchsprotokolle von Studenten, die das Experiment im physikalischen Praktikum an einer Hochschule ausführen mussten, bestätigen das2. Ein Teil dieser Experimente benutzt die so genannte Gegenfeldmethode3. Bei ihr ist die Bestimmung der Fotostrom-Nullstelle kritisch. Eine theoretische Berechnung der Fotostromkurve und das daraus abgeleitete Verfahren, auf den Wert Null des  Fotostroms zu extrapolieren, liefert aber offenbar keine Verbesserung4. Auch die vielfach angewandte Auflademethode5 ergibt kaum „bessere“ Werte der Planckschen Konstanten.

Gründe für die Diskrepanz zwischen Theorie und Experiment werden in der Literatur diskutiert6, aber nur zum Teil experimentell untersucht. Genannt werden u. a. nicht exakt monochrome Beleuchtung, Streulicht, das nicht genügend unterdrückt wird, Niederschlag von Kathodenmaterial auf der Anode, falsche Extrapolation auf den Wert Null des Fotostroms, ein zu kleiner Isolationswiderstand zwischen Kathode und Anode und die Tatsache, dass auch Elektronen oberhalb der Fermikante zum Fotostrom beitragen und so die Maximalenergie der Fotoelektronen bzw. die Aufladespannung verändern.

Ich schließe daraus: Das Experiment ist mit einem systematischen Fehler behaftet, dessen Ursache bisher unbekannt ist. Vielleicht nur mir unbekannt. Jedenfalls warte ich immer noch auf einen Versuch zum Fotoeffekt (überzeugend protokolliert und mit realistischer Fehlerabschätzung), dessen Wert die Plancksche Konstante innerhalb der Fehlergrenzen reproduziert.

Das Diagramm ist das Ergebnis einer meiner Messungen nach der Gegenfeldmethode. Es zeigt die Gegenspannung, bei der der Fotostrom Null wird, aufgetragen als Funktion der Frequenz der Strahlung. Die Steigung der Geraden ist gleich der Planckschen Konstanten dividiert durch die Elementarladung. Passt man eine Gerade an die Messpunkte an, erhält man h/e =  (3,81 ± 0,22)·10-15 eVs  oder   h = (6,10 ± 0,35)·10-34 Js. Der Literaturwert ist  h = 6,63·10-34 Js.

1   Eine grobe Beschreibung der Physik des Versuchs und eigene Resultate hier.
2   KIT, Musterprotokolle, in www-ekp.physik.uni-karlsruhe.de/~simonis/praktikum/…/musterprotokolle.
3   Gegenfeldmethode siehe 1.
4   Hübel, H. H., in http://www.forphys.de/Website/qm/schulversuche/fotschul.html
5   Auflademethode siehe 1.
6    z. B. Hübel, H. H., a. a. O.
 

Lorentzkraft verstehen

Lorentzkraft2.abbKann man Physik „verstehen“? Im Studium habe ich Physik gelernt, aber nicht verstanden. Die Erfahrung, dass man Physik auch verstehen kann, kam später. Und wurde durch ein Buch ausgelöst: Concepts in Physics von R. Adair1. Es ist wenig bekannt – vermutlich, weil es sich nicht zum Pauken für die Prüfung eignet. Das Buch liefert nicht nur die Physik eines Phänomens, sondern stellt auch immer den Zusammenhang her mit der dahinter liegenden Theorie2. Ein Beispiel: Das Magnetfeld eines stromführenden Drahtes. Es führt zu einer Kraft auf eine bewegte Ladung. Betrachtet man es von einem Koordinatensystem aus, das sich relativ zum Draht bewegt und in dem die Ladung ruht, ist es ein elektrisches Feld. Im Laborsystem wird daraus ein Magnetfeld. Kein Problem, sagt der Physiker, das erklärt die Relativitätstheorie unter dem Stichwort Lorentztransformation  und fängt an zu rechnen.  Adair‘s Buch zeigt, wie man dies „verstehen“ kann: Der Draht ist im mitbewegten System wegen der unterschiedlichen Lorentzkontraktion der Atomrümpfe und Elektronen elektrisch geladen und übt deshalb eine elektrische Kraft auf Ladungen aus. Nach der Rücktransformation ins Laborsystem erscheint diese als magnetische Kraft. Ich habe das Thema mehrmals im (Schul-) Unterricht behandelt, auch das Experiment dazu vorgeführt. Die Rechnungen sind nicht einfach; ich hoffe, meine Schüler/innen haben sie trotzdem „verstanden“.

Das Foto zeigt die Anordnung des Experiments: Ein Elektronenstrahl wird im Magnetfeld des stromführenden Drahts abgelenkt. Der Draht verläuft oberhalb des Glaskolbens parallel zur Strahlachse und ist als schwach roter Stab erkennbar. Der Strahl hinterlässt auf dem Schirm im Kolben die bläulich-weiße Leuchtspur.

1  Robert K. Adair: Concepts in Physics, Academic Press, New York NY, 1969. Natürlich bemühen sich alle Physiklehrbücher, die Physik verständlich zu machen. Hier eine Liste der Bücher,  in die ich bei Bedarf hineinschaue.

2  Im Vorwort des Buchs wird dieser Zusammenhang genannt „ … the intenal importance and internal consistency of physics …“.  Adair weiter unten: „In particular, I have attempted to give the student a reasonably sophisticated understanding of quantum mechanics, the special and general theories of relativity, and the importance of classifying the symmetries which we seem to observe in the universe.

Vor 20 Jahren: Hale-Bopp am Himmel

Hale_Bopp_vom_Garten_ausVor genau 20 Jahren war der Komet Hale-Bopp mit bloßem Auge zu sehen. Eine kleine Notiz zur Erinnerung an das Himmelsereignis ist da angebracht. Das Foto wurde im eigenen Garten aufgenommen, Blickrichtung NNW.  Der Komet steht zwischen den Sternen Algol im Sternbild Perseus und Alamak im Sternbild Andromeda (zweites Foto unten). Geschätzte Position: RA = 2h 38m, Delta = +41°. Aus der Ephemeridentabelle1 entnimmt man, dass Hale-Bopp dort am 07. April 1997 stand. Die beiden Schweife sind auf dem schwarz-weiß-Foto gut sichtbar.

1 http://www2.jpl.nasa.gov/comet/ephemjpl8.html

 

 

Hale_Bopp_mit_Sternbildern_02