Schumann-Resonanzen, neue Messung

Endlich ist es mir gelungen, Schumann-Resonanzen1 auch in einer elektrisch nicht gerade störungsarmen Umgebung nachzuweisen – und zwar im Garten hinter dem Haus. Experten erzeugen an geeigneteren Standorten und mit mehr Aufwand bessere Spektren. Mir ging es darum, sie überhaupt zu beobachten. Und das mit bescheidenen Mitteln. Die Peaks der Resonanzen sind zwar mickrig, aber deutlich zu sehen.

Ich benutze den von S. Fusare2 beschriebenen Empfänger, der die elektrische Feldstärke nachweist. Er besteht aus einer etwa 2 m langen (vertikalen) Stabantenne und einem Impedanzwandler, der den Wechselstromwiderstand der Antenne (Größenordnung 900 MOhm) an die nachfolgende Elektronik anpasst. Mein früherer Artikel3 zeigt den Stromlaufplan. Die Antenne steht, auf einem etwa 3 m hohen Mast montiert, in der Mitte eines Rasenstücks. Der Rasen ist von niedrigen Bäumen und Sträuchern umgeben (Abstand etwa 5 m) – Wie schon angedeutet kein idealer Standort, da die Bäume als kapazitive Spannungsteiler das Signal der Antenne herunterdrücken.

Der Antennenstab ist am Fußpunkt direkt mit der Eingangsbuchse des Empfängers verbunden. Die Isolation der Buchse (Teflon) wird sorgfältig mit Spiritus gereinigt und deren Lötkontakt direkt mit dem Gatepin des JFET-Eingangstransitors (BF 245) verbunden. Der Ausgang des Empfängers ist über ein etwa 20 m langes Koaxialkabel (RG174) mit einem USB-Oszilloskop (Pico 2208B) verbunden, das als Analog-Digitalwandler arbeitet. Eine FFT-Software besorgt die Spektralanalyse.

Die Abbildung zeigt das Ergebnis meiner Messung. Messdauer etwa zwei Stunden, das Spektrum entstand durch Mittelwertbildung über dieses Zeitintervall. Die Schumann-Peaks bei 8, 14, 20, 26 und 32 Hz heben sich deutlich vom Rauschen ab. An den Stellen 16 2/3 Hz, 33 1/3 Hz und 50 Hz machen sich Bahnstrom, deren Oberwelle und Netz-Versorgung in Form scharfer Linien bemerkbar – und stören zum Teil.

Die Schumann-Resonanzen sind, wie in der Abbildung zu sehen, breite Buckel – keine scharfen Linien. Ihr Q-Wert ist klein. Seine Berechnung ist Thema einer Übungsaufgabe des Lehrbuchs Classical Electrodynamics von J. D. Jackson – und dem Niveau des Buchs entsprechend anspruchsvoll. Wer damit nicht zurechtkommt (z. B. ich), kann sie einer der Sammlungen von Lösungen entnehmen, die im Netz vorhanden sind. Hier habe ich versucht, den Rechenweg anhand einer dort veröffentlichten Lösung4 nachzuempfinden.

1 Schumann, W. O. (1952): Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Zeitschrift und Naturforschung 7a: 149–154. Bibcode:1952ZNatA…7..149S.
2 Fusare, Scott (Rufzeichen N2BJW): An experimenters approach to detecting the Schumann Resonances, zitiert in home.arcor.de/peter.schmalkoke/…/schumann1.pdf
3 Theissen, H.: Schumann-Resonanzen, erster Versuch
4 Aufgabe 8.9 des Buchs J. D. Jackson, Classical Electrodynamics, Wiley 1962,  siehe www_personal.umich.edu/~pran/jackson/P506/hw02a.pdf